HYDRODYNAMICS OF TURBULENT FLOW IN A FAST REACTOR FUEL ASSEMBLIES (VELOCITY FIELD AND MICROSTRUCTURE OF TURBULENCE)

A. Sorokin, J. Kuzina, N. Denisova
{"title":"HYDRODYNAMICS OF TURBULENT FLOW IN A FAST REACTOR FUEL ASSEMBLIES (VELOCITY FIELD AND MICROSTRUCTURE OF TURBULENCE)","authors":"A. Sorokin, J. Kuzina, N. Denisova","doi":"10.55176/2414-1038-2021-2-139-166","DOIUrl":null,"url":null,"abstract":"The article describes the factors under the influence of which the formation of thermohydraulic characteristics occurs in the fuel assemblies of the core of fast reactors with liquid metal cooling. It is shown that one of the most important factors is a complex multiply connected geometry of a stochastic nature, subject to deformation during the campaign under the influence of temperature irregularities and radiation effects. The paper presents and analyzes the results of experimental and computational studies of the velocity field and shear stress, the microstructure of turbulence, momentum transfer in the central and peripheral regions of fuel assemblies without and with displacers, as well as in the case of deformation of the lattice of rods. The intensification of turbulent momentum transfer in the channels in the azimuthal direction in the area of the gaps between the rods is demonstrated. The anisotropy coefficient of turbulent momentum transfer reaches 30-40 units. The performed analysis indicated a significant difference in the calculated in the framework of semi-empirical models of turbulent transfer and experimental dependences of the coefficients of turbulent transfer of momentum in the radial and azimuthal directions and the coefficients of anisotropy of turbulent transfer of momentum in rod bundles. The results of an open benchmark on the thermohydraulics of fuel assemblies showed that common commercial computational thermohydraulic codes only approximately describe the experimental data. It is shown that the intensification of turbulent momentum transfer in the channels of rod assemblies is due to the appearance of large-scale turbulent momentum transfer (secondary flows). The contribution of large-scale turbulent momentum transfer to the kinetic energy of turbulent pulsations, azimuthal turbulent shear stresses, and turbulent momentum transfer coefficients in rod assemblies is calculated. An empirical dependence of the coefficient of interchannel turbulent impulse exchange in bundles of smooth rods is obtained, on the basis of a semi-empirical model, data on interchannel turbulent impulse exchange in assemblies of smooth rods are generalized, and the intensification of interchannel turbulent exchange in close lattices of rods is explained. Data on hydraulic resistance in bundles of smooth rods are analyzed. The tasks of further research are discussed.","PeriodicalId":20426,"journal":{"name":"PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55176/2414-1038-2021-2-139-166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The article describes the factors under the influence of which the formation of thermohydraulic characteristics occurs in the fuel assemblies of the core of fast reactors with liquid metal cooling. It is shown that one of the most important factors is a complex multiply connected geometry of a stochastic nature, subject to deformation during the campaign under the influence of temperature irregularities and radiation effects. The paper presents and analyzes the results of experimental and computational studies of the velocity field and shear stress, the microstructure of turbulence, momentum transfer in the central and peripheral regions of fuel assemblies without and with displacers, as well as in the case of deformation of the lattice of rods. The intensification of turbulent momentum transfer in the channels in the azimuthal direction in the area of the gaps between the rods is demonstrated. The anisotropy coefficient of turbulent momentum transfer reaches 30-40 units. The performed analysis indicated a significant difference in the calculated in the framework of semi-empirical models of turbulent transfer and experimental dependences of the coefficients of turbulent transfer of momentum in the radial and azimuthal directions and the coefficients of anisotropy of turbulent transfer of momentum in rod bundles. The results of an open benchmark on the thermohydraulics of fuel assemblies showed that common commercial computational thermohydraulic codes only approximately describe the experimental data. It is shown that the intensification of turbulent momentum transfer in the channels of rod assemblies is due to the appearance of large-scale turbulent momentum transfer (secondary flows). The contribution of large-scale turbulent momentum transfer to the kinetic energy of turbulent pulsations, azimuthal turbulent shear stresses, and turbulent momentum transfer coefficients in rod assemblies is calculated. An empirical dependence of the coefficient of interchannel turbulent impulse exchange in bundles of smooth rods is obtained, on the basis of a semi-empirical model, data on interchannel turbulent impulse exchange in assemblies of smooth rods are generalized, and the intensification of interchannel turbulent exchange in close lattices of rods is explained. Data on hydraulic resistance in bundles of smooth rods are analyzed. The tasks of further research are discussed.
快堆燃料组件湍流流体动力学(湍流的速度场和微观结构)
本文介绍了液态金属冷却快堆堆芯燃料组件热水力特性形成的影响因素。结果表明,最重要的因素之一是具有随机性质的复杂多重连通几何,在运动过程中受温度不规则性和辐射效应的影响而发生变形。本文介绍并分析了速度场和剪切应力、湍流微观结构、燃料组件中心和外围区域的动量传递以及燃料棒晶格变形情况的实验和计算研究结果。在杆间间隙区域,湍流动量在方位角方向上的传递在通道中增强。湍流动量传递的各向异性系数达到30-40个单位。分析表明,在紊流传递半经验模型框架下计算的紊流在径向和方位角方向上的动量传递系数以及杆束内的动量传递各向异性系数与实验依赖关系存在显著差异。对燃料组件热水力学的公开基准测试结果表明,通用的商用热水力学计算程序只能近似地描述实验数据。结果表明,杆组通道内湍流动量传递的加剧是由于大规模湍流动量传递(二次流)的出现。计算了大尺度湍流动量传递对湍流脉动动能、方位角湍流剪应力和棒组湍流动量传递系数的贡献。得到了光滑棒束中通道间湍流脉冲交换系数的经验依赖关系,在半经验模型的基础上,推广了光滑棒束中通道间湍流脉冲交换的数据,并解释了在紧密的棒格中通道间湍流交换的强化。分析了光滑杆束的水力阻力数据。讨论了进一步研究的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信