Breather solutions for a quasilinear (1+1)-dimensional wave equation

Simon Kohler, Wolfgang Reichel Institute for Analysis, Karlsruhe Institute of Technology, D. Karlsruhe, H Germany
{"title":"Breather solutions for a quasilinear (1+1)-dimensional wave equation","authors":"Simon Kohler, Wolfgang Reichel Institute for Analysis, Karlsruhe Institute of Technology, D. Karlsruhe, H Germany","doi":"10.5445/IR/1000132263","DOIUrl":null,"url":null,"abstract":"We consider the $(1 + 1)$-dimensional quasilinear wave equation $g(x)w_{tt} − w_{xx} + h(x)(w^3_t)_t = 0$ on $\\mathbb{R}\\times\\mathbb{R}$ which arises in the study of localized electromagnetic waves modeled by Kerr-nonlinear Maxwell equations. We are interested in time-periodic, spatially localized solutions. Here $g\\in L^{\\infty}(\\mathbb{R})$ is even with $g\\not\\equiv 0$ and $h(x) = \\gamma\\delta_0(x)$ with $\\gamma\\in\\mathbb{R}\\backslash\\{0\\}$ and $\\delta_0$ the delta distribution supported in $0$. We assume that $0$ lies in a spectral gap of the operators $L_k = \\frac{d^2}{dx^2}-k^2\\omega^2g$ on $L^2(\\mathbb{R})$ for all $k\\in 2\\mathbb{Z}+1$ together with additional properties of the fundamental set of solutions of $L_k$. By expanding $w$ into a Fourier series in time we transfer the problem of finding a suitably defined weak solution to finding a minimizer of a functional on a sequence space. The solutions that we have found are exponentially localized in space. Moreover, we show that they can be well approximated by truncating the Fourier series in time. The guiding examples, where all assumptions are fulfilled, are explicitely given step potentials and periodic step potentials $g$. In these examples we even find infinitely many distinct breathers.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000132263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the $(1 + 1)$-dimensional quasilinear wave equation $g(x)w_{tt} − w_{xx} + h(x)(w^3_t)_t = 0$ on $\mathbb{R}\times\mathbb{R}$ which arises in the study of localized electromagnetic waves modeled by Kerr-nonlinear Maxwell equations. We are interested in time-periodic, spatially localized solutions. Here $g\in L^{\infty}(\mathbb{R})$ is even with $g\not\equiv 0$ and $h(x) = \gamma\delta_0(x)$ with $\gamma\in\mathbb{R}\backslash\{0\}$ and $\delta_0$ the delta distribution supported in $0$. We assume that $0$ lies in a spectral gap of the operators $L_k = \frac{d^2}{dx^2}-k^2\omega^2g$ on $L^2(\mathbb{R})$ for all $k\in 2\mathbb{Z}+1$ together with additional properties of the fundamental set of solutions of $L_k$. By expanding $w$ into a Fourier series in time we transfer the problem of finding a suitably defined weak solution to finding a minimizer of a functional on a sequence space. The solutions that we have found are exponentially localized in space. Moreover, we show that they can be well approximated by truncating the Fourier series in time. The guiding examples, where all assumptions are fulfilled, are explicitely given step potentials and periodic step potentials $g$. In these examples we even find infinitely many distinct breathers.
拟线性(1+1)维波动方程的呼吸解
本文考虑在研究克尔-非线性麦克斯韦方程组模拟的局域电磁波时,在$\mathbb{R}\times\mathbb{R}$上出现的$(1 + 1)$维拟线性波动方程$g(x)w_{tt} − w_{xx} + h(x)(w^3_t)_t = 0$。我们感兴趣的是时间周期的,空间局部化的解。这里$g\in L^{\infty}(\mathbb{R})$与$g\not\equiv 0$和$h(x) = \gamma\delta_0(x)$是一致的,与$0$支持的delta发行版$\gamma\in\mathbb{R}\backslash\{0\}$和$\delta_0$是一致的。我们假设$0$位于$L^2(\mathbb{R})$上所有$k\in 2\mathbb{Z}+1$的算子$L_k = \frac{d^2}{dx^2}-k^2\omega^2g$的谱隙中,同时考虑到$L_k$的基本解集的附加性质。通过将$w$展开为时间上的傅里叶级数,我们将寻找合适定义的弱解的问题转化为寻找序列空间上泛函的最小值。我们找到的解在空间上是指数局域的。此外,我们证明了它们可以很好地通过截断傅里叶级数在时间上的近似。所有假设都满足的指导性例子是明确给出阶跃势和周期阶跃势$g$。在这些例子中,我们甚至发现了无限多个不同的呼吸者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信