Optimal representations of quantum states by Gaussians in phase space

A. Kenfack, J. Rost, A. M. Almeida
{"title":"Optimal representations of quantum states by Gaussians in phase space","authors":"A. Kenfack, J. Rost, A. M. Almeida","doi":"10.1088/0953-4075/37/8/007","DOIUrl":null,"url":null,"abstract":"A two-step optimization is proposed to represent an arbitrary quantum state to the desired accuracy with the smallest number of Gaussians in phase space. The Husimi distribution of the quantum state provides the information to determine the modulus of the weight for the Gaussians. Then, the phase information contained in the Wigner distribution is used to obtain the full complex weights by considering the relative phases for pairs of Gaussians, the chords. The method is exemplified with excited states n of the harmonic and the Morse oscillators. A semiclassical interpretation of the number of Gaussians needed as a function of the quantum number n is given.","PeriodicalId":16799,"journal":{"name":"Journal of Physics B","volume":"72 1","pages":"1645-1657"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0953-4075/37/8/007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A two-step optimization is proposed to represent an arbitrary quantum state to the desired accuracy with the smallest number of Gaussians in phase space. The Husimi distribution of the quantum state provides the information to determine the modulus of the weight for the Gaussians. Then, the phase information contained in the Wigner distribution is used to obtain the full complex weights by considering the relative phases for pairs of Gaussians, the chords. The method is exemplified with excited states n of the harmonic and the Morse oscillators. A semiclassical interpretation of the number of Gaussians needed as a function of the quantum number n is given.
相空间中高斯量子态的最优表示
提出了一种用相空间中最小高斯数表示任意量子态的两步优化方法。量子态的胡西米分布提供了确定高斯分量模量的信息。然后,利用Wigner分布中包含的相位信息,通过考虑高斯对(和弦)的相对相位来获得完整的复权重。以谐振子和莫尔斯振子的激发态n为例说明了该方法。给出了所需的高斯数作为量子数n的函数的半经典解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信