Qian Wang, Zhi-chao Li, Zhanjun Liu, T. Gong, Wen-shuai Zhang, T. Xu, Bin Li, Ping Li, Xin Li, C. Zheng, L. Cao, Xincheng Liu, K. Pan, Hang Zhao, Yonggang Liu, B. Deng, Lifei Hou, Yingjie Li, Xiangming Liu, Yulong Li, X. Peng, Zanyang Guan, Qiangqiang Wang, X. Che, Sanwei Li, Qiang Yin, Wei Zhang, Liqiong Xia, Peng Wang, Xiaohua Jiang, Liang Guo, Qi Li, M. He, L. Hao, H. Cai, Wudi Zheng, S. Zou, Dong Yang, Feng Wang, Jiamin Yang, Bao-han Zhang, Yongkun Ding, Xiantu He
{"title":"The effects of incident light wavelength difference on the collective stimulated Brillouin scattering in plasmas","authors":"Qian Wang, Zhi-chao Li, Zhanjun Liu, T. Gong, Wen-shuai Zhang, T. Xu, Bin Li, Ping Li, Xin Li, C. Zheng, L. Cao, Xincheng Liu, K. Pan, Hang Zhao, Yonggang Liu, B. Deng, Lifei Hou, Yingjie Li, Xiangming Liu, Yulong Li, X. Peng, Zanyang Guan, Qiangqiang Wang, X. Che, Sanwei Li, Qiang Yin, Wei Zhang, Liqiong Xia, Peng Wang, Xiaohua Jiang, Liang Guo, Qi Li, M. He, L. Hao, H. Cai, Wudi Zheng, S. Zou, Dong Yang, Feng Wang, Jiamin Yang, Bao-han Zhang, Yongkun Ding, Xiantu He","doi":"10.1063/5.0151372","DOIUrl":null,"url":null,"abstract":"The first laser–plasma interaction experiment using lasers of eight beams grouped into one octad has been conducted on the Shenguang Octopus facility. Although each beam intensity is below its individual threshold for stimulated Brillouin backscattering (SBS), collective behaviors are excited to enhance the octad SBS. In particular, when two-color/cone lasers with wavelength separation 0.3 nm are used, the backward SBS reflectivities show novel behavior in which beams of longer wavelength achieve higher SBS gain. This property of SBS can be attributed to the rotation of the wave vectors of common ion acoustic waves due to the competition of detunings between geometrical angle and wavelength separation. This mechanism is confirmed using massively parallel supercomputer simulations with the three-dimensional laser–plasma interaction code LAP3D.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"107 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0151372","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The first laser–plasma interaction experiment using lasers of eight beams grouped into one octad has been conducted on the Shenguang Octopus facility. Although each beam intensity is below its individual threshold for stimulated Brillouin backscattering (SBS), collective behaviors are excited to enhance the octad SBS. In particular, when two-color/cone lasers with wavelength separation 0.3 nm are used, the backward SBS reflectivities show novel behavior in which beams of longer wavelength achieve higher SBS gain. This property of SBS can be attributed to the rotation of the wave vectors of common ion acoustic waves due to the competition of detunings between geometrical angle and wavelength separation. This mechanism is confirmed using massively parallel supercomputer simulations with the three-dimensional laser–plasma interaction code LAP3D.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.