Active surveillance using depth sensing technology — Part I: Intrusion detection

Boon Leng Yap, Vishnu Monn Baskaran
{"title":"Active surveillance using depth sensing technology — Part I: Intrusion detection","authors":"Boon Leng Yap, Vishnu Monn Baskaran","doi":"10.1109/ICCE-TW.2016.7520901","DOIUrl":null,"url":null,"abstract":"In part I of a three-part series on active surveillance using depth-sensing technology, this paper proposes an algorithm to identify outdoor intrusion activities by monitoring skeletal positions from Microsoft Kinect sensor in real-time. This algorithm implements three techniques to identify a premise intrusion. The first technique observes a boundary line along the wall (or fence) of a surveilled premise for skeletal trespassing detection. The second technique observes the duration of a skeletal object within a region of a surveilled premise for loitering detection. The third technique analyzes the differences in skeletal height to identify wall climbing. Experiment results suggest that the proposed algorithm is able to detect trespassing, loitering and wall climbing at a rate of 70%, 85% and 80% respectively.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"109 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7520901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In part I of a three-part series on active surveillance using depth-sensing technology, this paper proposes an algorithm to identify outdoor intrusion activities by monitoring skeletal positions from Microsoft Kinect sensor in real-time. This algorithm implements three techniques to identify a premise intrusion. The first technique observes a boundary line along the wall (or fence) of a surveilled premise for skeletal trespassing detection. The second technique observes the duration of a skeletal object within a region of a surveilled premise for loitering detection. The third technique analyzes the differences in skeletal height to identify wall climbing. Experiment results suggest that the proposed algorithm is able to detect trespassing, loitering and wall climbing at a rate of 70%, 85% and 80% respectively.
使用深度传感技术的主动监视。第1部分:入侵检测
在利用深度传感技术进行主动监控的三部分系列文章的第一部分中,本文提出了一种算法,通过实时监控微软Kinect传感器的骨骼位置来识别室外入侵活动。该算法实现了三种识别前提入侵的技术。第一种技术是沿着被监视场所的墙壁(或围栏)观察边界线,以进行骨骼侵入检测。第二种技术是在监视的前提区域内观察骨骼物体的持续时间,以进行游荡检测。第三种技术是分析骨骼高度的差异,以识别爬墙。实验结果表明,该算法对擅闯、游荡和爬墙的检测率分别为70%、85%和80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信