{"title":"Firefly Algorithm Based on Euclidean Metric and Dimensional Mutation","authors":"Jing Wang, Yanfeng Ji","doi":"10.4018/IJCINI.286769","DOIUrl":null,"url":null,"abstract":"Firefly algorithm is a meta-heuristic stochastic search algorithm with strong robustness and easy implementation. However, it also has some shortcomings, such as the “oscillation” phenomenon caused by too many attractions, which makes the convergence speed too slow or premature. In the original FA, the full attraction model makes the algorithm consume a lot of evaluation times, and the time complexity is high. Therefore, in this paper, a novel firefly algorithm (EMDmFA) based on Euclidean metric (EM) and dimensional mutation (DM) is proposed. The EM strategy makes the firefly learn from its nearest neighbors. When the firefly is better than its neighbors, it learns from the best individuals in the population. It improves the FA attraction model and dramatically reduces the computational time complexity. At the same time, DM strategy improves the ability of the algorithm to jump out of the local optimum. The experimental results show that the proposed EMDmFA significantly improves the accuracy of the solution and better than most state-of-the-art FA variants.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"78 1","pages":"1-19"},"PeriodicalIF":0.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCINI.286769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Firefly algorithm is a meta-heuristic stochastic search algorithm with strong robustness and easy implementation. However, it also has some shortcomings, such as the “oscillation” phenomenon caused by too many attractions, which makes the convergence speed too slow or premature. In the original FA, the full attraction model makes the algorithm consume a lot of evaluation times, and the time complexity is high. Therefore, in this paper, a novel firefly algorithm (EMDmFA) based on Euclidean metric (EM) and dimensional mutation (DM) is proposed. The EM strategy makes the firefly learn from its nearest neighbors. When the firefly is better than its neighbors, it learns from the best individuals in the population. It improves the FA attraction model and dramatically reduces the computational time complexity. At the same time, DM strategy improves the ability of the algorithm to jump out of the local optimum. The experimental results show that the proposed EMDmFA significantly improves the accuracy of the solution and better than most state-of-the-art FA variants.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.