Grid-based k-Nearest Neighbor Queries over Moving Object Trajectories with MapReduce

Ying Xia, Ruidi Wang, Xu Zhang, Hae-Young Bae
{"title":"Grid-based k-Nearest Neighbor Queries over Moving Object Trajectories with MapReduce","authors":"Ying Xia, Ruidi Wang, Xu Zhang, Hae-Young Bae","doi":"10.14257/IJDTA.2017.10.4.01","DOIUrl":null,"url":null,"abstract":"k-Nearest Neighbor Trajectory (k-NNT) Query is a basic and important spatial query operation widely used in many fields, such as intelligent transportation and urban planning. However, with the rapid increase of trajectory data volume, traditional k-NNT query algorithms for centralized environment are not effective and scalable enough, because the computational complexity increases dramatically when the spatial continuity of trajectories is considered. To address this problem, we propose a distributed grid index for trajectory data which partitions the trajectory into grids under MapReduce framework. Furthermore, a parallel query approach MR-GB-KNNT is proposed based on the proposed grid index to improve the efficiency and scalability of the k-NNT query. The experiment demonstrates that MR-GB-KNNT could perform well in cloud computing environment and improve the querying performance of the k-NNT.","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"194 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJDTA.2017.10.4.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

k-Nearest Neighbor Trajectory (k-NNT) Query is a basic and important spatial query operation widely used in many fields, such as intelligent transportation and urban planning. However, with the rapid increase of trajectory data volume, traditional k-NNT query algorithms for centralized environment are not effective and scalable enough, because the computational complexity increases dramatically when the spatial continuity of trajectories is considered. To address this problem, we propose a distributed grid index for trajectory data which partitions the trajectory into grids under MapReduce framework. Furthermore, a parallel query approach MR-GB-KNNT is proposed based on the proposed grid index to improve the efficiency and scalability of the k-NNT query. The experiment demonstrates that MR-GB-KNNT could perform well in cloud computing environment and improve the querying performance of the k-NNT.
基于网格的移动对象轨迹k近邻查询
k-最近邻轨迹查询(k-NNT)是一种基本而重要的空间查询操作,广泛应用于智能交通、城市规划等领域。然而,随着轨迹数据量的迅速增加,传统的k-NNT集中式环境查询算法在考虑轨迹空间连续性时计算复杂度急剧增加,其有效性和可扩展性不足。为了解决这个问题,我们提出了一种分布式的轨迹数据网格索引,该索引在MapReduce框架下将轨迹划分为网格。在此基础上,提出了一种基于网格索引的并行查询方法MR-GB-KNNT,以提高k-NNT查询的效率和可扩展性。实验结果表明,MR-GB-KNNT在云计算环境下具有良好的性能,提高了k-NNT的查询性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信