Geo-Social K-Cover Group queries for collaborative spatial computing

Yafei Li, Rui Chen, Jianliang Xu, Qiao Huang, Haibo Hu, Byron Choi
{"title":"Geo-Social K-Cover Group queries for collaborative spatial computing","authors":"Yafei Li, Rui Chen, Jianliang Xu, Qiao Huang, Haibo Hu, Byron Choi","doi":"10.1109/ICDE.2016.7498399","DOIUrl":null,"url":null,"abstract":"In this paper, we study a new type of Geo-Social K-Cover Group (GSKCG) queries that, given a set of query points and a social network, retrieves a minimum user group in which each user is socially related to at least k other users and the users' associated regions (e.g., familiar regions or service regions) can jointly cover all the query points. Albeit its practical usefulness, the GSKCG query problem is NP-hard. We consequently explore a set of effective pruning strategies to derive an efficient algorithm for finding the optimal solution. Moreover, we design a novel index structure tailored to our problem to further accelerate query processing. Extensive experiments demonstrate that our algorithm achieves desirable performance on real-life datasets.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"41 1","pages":"1510-1511"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In this paper, we study a new type of Geo-Social K-Cover Group (GSKCG) queries that, given a set of query points and a social network, retrieves a minimum user group in which each user is socially related to at least k other users and the users' associated regions (e.g., familiar regions or service regions) can jointly cover all the query points. Albeit its practical usefulness, the GSKCG query problem is NP-hard. We consequently explore a set of effective pruning strategies to derive an efficient algorithm for finding the optimal solution. Moreover, we design a novel index structure tailored to our problem to further accelerate query processing. Extensive experiments demonstrate that our algorithm achieves desirable performance on real-life datasets.
协同空间计算的地理社会K-Cover组查询
本文研究了一种新的地理社会k -覆盖组(GSKCG)查询,给定一组查询点和一个社交网络,检索一个最小用户组,其中每个用户与至少k个其他用户有社会关系,并且用户所关联的区域(如熟悉区域或服务区域)可以共同覆盖所有查询点。尽管GSKCG具有实用性,但它的查询问题是np困难的。因此,我们探索了一组有效的修剪策略,以推导出寻找最优解的有效算法。此外,我们还针对问题设计了一种新的索引结构,以进一步加快查询处理速度。大量的实验表明,我们的算法在实际数据集上取得了理想的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信