D. Zurita, J. Carino, Miguel Delgado Prieto, J. A. Redondo
{"title":"Distributed neuro-fuzzy feature forecasting approach for condition monitoring","authors":"D. Zurita, J. Carino, Miguel Delgado Prieto, J. A. Redondo","doi":"10.1109/ETFA.2014.7005180","DOIUrl":null,"url":null,"abstract":"The industrial machinery reliability represents a critical factor in order to assure the proper operation of the whole productive process. In regard with this, diagnosis schemes based on physical magnitudes acquisition, features calculation, features reduction and classification are being applied. However, in this paper, in order to enhance the condition monitoring capabilities, a forecasting approach is proposed, in which not only the current status of the system under monitoring in identified, diagnosis, but also the future condition is assessed, prognosis. The novelties of the proposed methodology are based on a distributed features forecasting approach by means of adaptive neuro-fuzzy inference system models. The proposed method is validated by means of an accelerated bearing degradation experimental platform.","PeriodicalId":20477,"journal":{"name":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2014.7005180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
The industrial machinery reliability represents a critical factor in order to assure the proper operation of the whole productive process. In regard with this, diagnosis schemes based on physical magnitudes acquisition, features calculation, features reduction and classification are being applied. However, in this paper, in order to enhance the condition monitoring capabilities, a forecasting approach is proposed, in which not only the current status of the system under monitoring in identified, diagnosis, but also the future condition is assessed, prognosis. The novelties of the proposed methodology are based on a distributed features forecasting approach by means of adaptive neuro-fuzzy inference system models. The proposed method is validated by means of an accelerated bearing degradation experimental platform.