OPERATION FEATURES OF ENVIRONMENTALLY EFFICIENT BOILER PLANTS OF MUNICIPAL THERMAL POWER ENGINEERING

Марії Капніст
{"title":"OPERATION FEATURES OF ENVIRONMENTALLY EFFICIENT BOILER PLANTS OF MUNICIPAL THERMAL POWER ENGINEERING","authors":"Марії Капніст","doi":"10.31472/ttpe.2.2023.6","DOIUrl":null,"url":null,"abstract":"The work is devoted to research on the improvement of thermal energy production technologies in gas-consuming heating boiler installations while improving their environmental performance and increasing the operation reliability. The work purpose is to study the heat and humidity modes of the air-supply ducts of boiler plants with exhaust gases recirculation systems into the blown air. The main objectives of the study are: to determine the thermal parameters of a heating boiler with a 2 MW heating capacity with a exhaust gases recirculation system mixed with blown air into its furnace space under conditions of using heat recovery technologies and without them; determination and analysis the heat and humidity parameters of this mixture in different operating modes of boiler plants. Known thermal calculation methods of boiler plants and data from our own experimental studies of heat transfer during deep cooling of boiler plant exhaust gases were used. The thermal calculation results of the heating boiler with a system for exhaust gas recirculation into its furnace space mixed with blown air are presented. The regularities of changes in the adiabatic combustion temperature and heat-humidity characteristics of the above mixture depending on the boiler heat load in different its operation modes during the heating period and the share of flue gas recirculation from 10 to 20 % were established. The research results show that the introduction of recirculation gases leads to a decrease by 150 – 250 °С of the adiabatic combustion temperature tad due to the need to consume fuel heat for heating the introduced ballast and the greater of the recirculation share s the lower the level of the indicated temperature. The research results also showed that gas recirculation causes insignificant (in the range of 0.5 – 4.7 °С) changes in the temperature of the boiler exhaust gases. Based on the data obtained, the change regularities in the heat-humidity characteristics (temperature and dew point) of the mixture of recirculated gases and air in different boiler operating modes during the heating period and under the studied recirculation shares were established. It is shown that recirculation causes condensate formation on the surfaces of air ducts in all operating modes of boiler and in some modes their icing is possible. To prevent these negative phenomena, it is necessary to apply measures to increase the temperature of the gas-air mixture by a value not less than Δtsum = 15 – 35 °С.","PeriodicalId":23079,"journal":{"name":"Thermophysics and Thermal Power Engineering","volume":"3 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Thermal Power Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31472/ttpe.2.2023.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The work is devoted to research on the improvement of thermal energy production technologies in gas-consuming heating boiler installations while improving their environmental performance and increasing the operation reliability. The work purpose is to study the heat and humidity modes of the air-supply ducts of boiler plants with exhaust gases recirculation systems into the blown air. The main objectives of the study are: to determine the thermal parameters of a heating boiler with a 2 MW heating capacity with a exhaust gases recirculation system mixed with blown air into its furnace space under conditions of using heat recovery technologies and without them; determination and analysis the heat and humidity parameters of this mixture in different operating modes of boiler plants. Known thermal calculation methods of boiler plants and data from our own experimental studies of heat transfer during deep cooling of boiler plant exhaust gases were used. The thermal calculation results of the heating boiler with a system for exhaust gas recirculation into its furnace space mixed with blown air are presented. The regularities of changes in the adiabatic combustion temperature and heat-humidity characteristics of the above mixture depending on the boiler heat load in different its operation modes during the heating period and the share of flue gas recirculation from 10 to 20 % were established. The research results show that the introduction of recirculation gases leads to a decrease by 150 – 250 °С of the adiabatic combustion temperature tad due to the need to consume fuel heat for heating the introduced ballast and the greater of the recirculation share s the lower the level of the indicated temperature. The research results also showed that gas recirculation causes insignificant (in the range of 0.5 – 4.7 °С) changes in the temperature of the boiler exhaust gases. Based on the data obtained, the change regularities in the heat-humidity characteristics (temperature and dew point) of the mixture of recirculated gases and air in different boiler operating modes during the heating period and under the studied recirculation shares were established. It is shown that recirculation causes condensate formation on the surfaces of air ducts in all operating modes of boiler and in some modes their icing is possible. To prevent these negative phenomena, it is necessary to apply measures to increase the temperature of the gas-air mixture by a value not less than Δtsum = 15 – 35 °С.
市政火电工程环境高效锅炉厂运行特点
研究在提高燃气供热锅炉的环境性能和运行可靠性的同时,改进燃气供热锅炉装置的产热技术。本工作的目的是研究带废气再循环系统的锅炉送风管道的热和湿度模式。研究的主要目的是:确定一个2 MW的供热能力的锅炉,在使用热回收技术和不使用热回收技术的情况下,将废气再循环系统与吹入炉内的空气混合在一起;测定并分析了该混合料在锅炉不同运行模式下的热湿参数。本文采用了锅炉厂已知的热计算方法和我们自己对锅炉厂废气深度冷却过程中传热的实验研究数据。本文给出了采用烟气与吹风混合再循环系统的供热锅炉的热工计算结果。建立了供热期不同运行方式下锅炉热负荷及烟气再循环比重在10% ~ 20%范围内,上述混合气绝热燃烧温度和热湿特性随锅炉热负荷的变化规律。研究结果表明,由于引入再循环气体需要消耗燃料热量来加热引入的压载物,导致绝热燃烧温度tad降低150 ~ 250°С,再循环气体份额越大,指示温度水平越低。研究结果还表明,燃气再循环对锅炉废气温度的影响不显著(在0.5 ~ 4.7°С范围内)。根据所获得的数据,建立了供热期和所研究的再循环份额下,不同锅炉运行模式下再循环气体与空气混合物的热湿特性(温度和露点)的变化规律。结果表明,在锅炉的所有运行模式下,再循环都会在风管表面形成冷凝水,在某些模式下,风管表面结冰是可能的。为了防止这些负面现象,有必要采取措施,将气体-空气混合物的温度提高不低于Δtsum = 15 - 35°С。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信