Lightweight automated detection of unsafe information leakage via exceptions

Benwen Zhang, J. Clause
{"title":"Lightweight automated detection of unsafe information leakage via exceptions","authors":"Benwen Zhang, J. Clause","doi":"10.1145/2610384.2610412","DOIUrl":null,"url":null,"abstract":"Unintended information leakage is one of the most common and severe problems facing modern applications. To help developers detect information leaks before they can be leveraged by attackers, we present a new static analysis-based technique for detecting a specific type of information leak: information leaks via exceptions. Because it focuses on a specific type of leak, the technique is able to be efficient, effective, and easy to use, qualities that are often lacking in more general techniques. We implemented our technique in a prototype tool, UDLD, and performed an extensive empirical evaluation using 19 real web applications. The results of the evaluation show that UDLD is both efficient and effective at detecting unsafe information leaks via exceptions; for the subjects that we considered, UDLD is the fastest among several alternative tools. Moreover, it reported more true leaks than existing state-of-the-art tools with no known false negatives and no false positives.","PeriodicalId":20624,"journal":{"name":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"90 1","pages":"327-338"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2610384.2610412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Unintended information leakage is one of the most common and severe problems facing modern applications. To help developers detect information leaks before they can be leveraged by attackers, we present a new static analysis-based technique for detecting a specific type of information leak: information leaks via exceptions. Because it focuses on a specific type of leak, the technique is able to be efficient, effective, and easy to use, qualities that are often lacking in more general techniques. We implemented our technique in a prototype tool, UDLD, and performed an extensive empirical evaluation using 19 real web applications. The results of the evaluation show that UDLD is both efficient and effective at detecting unsafe information leaks via exceptions; for the subjects that we considered, UDLD is the fastest among several alternative tools. Moreover, it reported more true leaks than existing state-of-the-art tools with no known false negatives and no false positives.
通过异常对不安全信息泄漏进行轻量级自动检测
无意的信息泄漏是现代应用程序面临的最常见和最严重的问题之一。为了帮助开发人员在攻击者利用信息泄漏之前检测信息泄漏,我们提出了一种新的基于静态分析的技术,用于检测特定类型的信息泄漏:通过异常进行的信息泄漏。由于它专注于特定类型的泄漏,因此该技术能够高效、有效且易于使用,而这些特性通常是更一般的技术所缺乏的。我们在原型工具UDLD中实现了我们的技术,并使用19个真实的web应用程序进行了广泛的经验评估。评估结果表明,UDLD在通过异常检测不安全信息泄漏方面既高效又有效;对于我们所考虑的主题,UDLD是几种可选工具中最快的。此外,它比现有的最先进的工具报告了更多的真实泄漏,没有已知的假阴性和假阳性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信