A perspective on insect water balance.

M. O'Donnell
{"title":"A perspective on insect water balance.","authors":"M. O'Donnell","doi":"10.1242/jeb.242358","DOIUrl":null,"url":null,"abstract":"Insects have a large ratio of surface area to volume because of their small size; thus, they face the potential for desiccation in the terrestrial environment. Nonetheless, they constitute over half of identified species and their success on land can be attributed, in part, to adaptations that limit water loss and allow for effective gains of water from food, fluids or atmospheric water vapour. Reduction of water loss from the gut involves sophisticated mechanisms of ion recycling and water recovery by epithelia of the Malpighian tubules and hindgut. Water loss across the body surface is greatly reduced by the evolution of very thin but highly impermeable lipid-rich layers in the epicuticle. Respiratory water loss can be reduced through effective spiracular control mechanisms and by mechanisms for convective rather than diffusive gas exchange. In addition to extracting water from food sources, some insects are capable of absorption of atmospheric water vapour through processes that have evolved independently in multiple groups.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1242/jeb.242358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Insects have a large ratio of surface area to volume because of their small size; thus, they face the potential for desiccation in the terrestrial environment. Nonetheless, they constitute over half of identified species and their success on land can be attributed, in part, to adaptations that limit water loss and allow for effective gains of water from food, fluids or atmospheric water vapour. Reduction of water loss from the gut involves sophisticated mechanisms of ion recycling and water recovery by epithelia of the Malpighian tubules and hindgut. Water loss across the body surface is greatly reduced by the evolution of very thin but highly impermeable lipid-rich layers in the epicuticle. Respiratory water loss can be reduced through effective spiracular control mechanisms and by mechanisms for convective rather than diffusive gas exchange. In addition to extracting water from food sources, some insects are capable of absorption of atmospheric water vapour through processes that have evolved independently in multiple groups.
昆虫水分平衡研究进展。
昆虫的表面积与体积之比很大,因为它们的体积很小;因此,它们在陆地环境中面临着潜在的干燥。尽管如此,它们占已查明物种的一半以上,它们在陆地上的成功可部分归因于限制水分流失并允许从食物、液体或大气水蒸气中有效获取水分的适应。肠道水分流失的减少涉及到马尔比氏小管上皮和后肠的离子循环和水回收的复杂机制。身体表面的水分流失通过表皮上非常薄但高度不渗透的富含脂质的层的进化而大大减少。通过有效的螺旋状控制机制和对流而非扩散气体交换机制,可以减少呼吸水分损失。除了从食物中提取水分外,一些昆虫还能够通过在多个群体中独立进化的过程吸收大气中的水蒸气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信