Electric vehicle speed tracking control using an ANFIS-based fractional order PID controller

Q1 Chemical Engineering
Mary Ann George , Dattaguru V. Kamat , Ciji Pearl Kurian
{"title":"Electric vehicle speed tracking control using an ANFIS-based fractional order PID controller","authors":"Mary Ann George ,&nbsp;Dattaguru V. Kamat ,&nbsp;Ciji Pearl Kurian","doi":"10.1016/j.jksues.2022.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Electric vehicles (EVs) have assumed prominence due to their enhanced performance, efficiency, and zero carbon emission. This paper proposes an efficient adaptive neuro-fuzzy inference system (ANFIS) based fractional order PID (FOPID) controller for an EV speed tracking control driven by a DC motor. The optimal controller parameters of the FOPID controller are found via an Ant Colony Optimization (ACO) method. The ANFIS controllers are well trained, tested, and validated using the data set sextracted from the fuzzy-based controllers. The performance and accuracy of the ANFIS model are evaluated using statistical parameters such as mean square error (MSE), coefficient of correlation (R), and root mean square error (RMSE). The controller performance, energy consumption, and robustness are tested using the new European drive cycle (NEDC) test. The efficacy of the ANFIS-based controller is demonstrated by comparing its performance with properly tuned fuzzy-based controllers. The proposed controller shows robustness towards external disturbances and offers promising EV speed regulation control. The comparative results illustrate the superior performance of ANFIS-based FOPID controller with high prediction and low error rates. MATLAB- Simulink platform is used for system modeling, controller design, and numerical simulation.</p></div>","PeriodicalId":35558,"journal":{"name":"Journal of King Saud University, Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1018363922000010/pdfft?md5=44ca6add4ac56b09fc73a41dfcc0dd3f&pid=1-s2.0-S1018363922000010-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University, Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1018363922000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Electric vehicles (EVs) have assumed prominence due to their enhanced performance, efficiency, and zero carbon emission. This paper proposes an efficient adaptive neuro-fuzzy inference system (ANFIS) based fractional order PID (FOPID) controller for an EV speed tracking control driven by a DC motor. The optimal controller parameters of the FOPID controller are found via an Ant Colony Optimization (ACO) method. The ANFIS controllers are well trained, tested, and validated using the data set sextracted from the fuzzy-based controllers. The performance and accuracy of the ANFIS model are evaluated using statistical parameters such as mean square error (MSE), coefficient of correlation (R), and root mean square error (RMSE). The controller performance, energy consumption, and robustness are tested using the new European drive cycle (NEDC) test. The efficacy of the ANFIS-based controller is demonstrated by comparing its performance with properly tuned fuzzy-based controllers. The proposed controller shows robustness towards external disturbances and offers promising EV speed regulation control. The comparative results illustrate the superior performance of ANFIS-based FOPID controller with high prediction and low error rates. MATLAB- Simulink platform is used for system modeling, controller design, and numerical simulation.

使用基于 ANFIS 的分数阶 PID 控制器实现电动汽车速度跟踪控制
电动汽车(EV)因其更高的性能、效率和零碳排放而备受瞩目。本文针对直流电机驱动的电动汽车速度跟踪控制,提出了一种基于分数阶 PID(FOPID)控制器的高效自适应神经模糊推理系统(ANFIS)。FOPID 控制器的最佳控制器参数是通过蚁群优化(ACO)方法找到的。利用从基于模糊的控制器中提取的数据集,对 ANFIS 控制器进行了良好的训练、测试和验证。ANFIS 模型的性能和准确性通过均方误差 (MSE)、相关系数 (R) 和均方根误差 (RMSE) 等统计参数进行评估。控制器的性能、能耗和鲁棒性通过新欧洲行驶循环(NEDC)测试进行了检验。通过将基于 ANFIS 的控制器的性能与经过适当调整的基于模糊的控制器进行比较,证明了该控制器的功效。所提出的控制器对外部干扰具有鲁棒性,并能对电动汽车进行速度调节控制。比较结果表明,基于 ANFIS 的 FOPID 控制器性能优越,预测准确率高,误差率低。MATLAB- Simulink 平台用于系统建模、控制器设计和数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of King Saud University, Engineering Sciences
Journal of King Saud University, Engineering Sciences Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
12.10
自引率
0.00%
发文量
87
审稿时长
63 days
期刊介绍: Journal of King Saud University - Engineering Sciences (JKSUES) is a peer-reviewed journal published quarterly. It is hosted and published by Elsevier B.V. on behalf of King Saud University. JKSUES is devoted to a wide range of sub-fields in the Engineering Sciences and JKSUES welcome articles of interdisciplinary nature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信