A Multimodal Retrieval and Ranking Method for Scientific Documents Based on HFS and XLNet

Sci. Program. Pub Date : 2022-01-04 DOI:10.1155/2022/5373531
Meichao Yan, Yuzhuo Wen, Qingxuan Shi, Xuedong Tian
{"title":"A Multimodal Retrieval and Ranking Method for Scientific Documents Based on HFS and XLNet","authors":"Meichao Yan, Yuzhuo Wen, Qingxuan Shi, Xuedong Tian","doi":"10.1155/2022/5373531","DOIUrl":null,"url":null,"abstract":"Aiming at the defects of traditional full-text retrieval models in dealing with mathematical expressions, which are special objects different from ordinary texts, a multimodal retrieval and ranking method for scientific documents based on hesitant fuzzy sets (HFS) and XLNet is proposed. This method integrates multimodal information, such as mathematical expression images and context text, as keywords to realize the retrieval of scientific documents. In the image modal, the images of mathematical expressions are recognized, and the hesitancy fuzzy set theory is introduced to calculate the hesitancy fuzzy similarity between mathematical query expressions and the mathematical expressions in candidate scientific documents. Meanwhile, in the text mode, XLNet is used to generate word vectors of the mathematical expression context to obtain the similarity between the query text and the mathematical expression context of the candidate scientific documents. Finally, the multimodal evaluation is integrated, and the hesitation fuzzy set is constructed at the document level to obtain the final scores of the scientific documents and corresponding ranked output. The experimental results show that the recall and precision of this method are 0.774 and 0.663 on the NTCIR dataset, respectively, and the average normalized discounted cumulative gain (NDCG) value of the top-10 ranking results is 0.880 on the Chinese scientific document (CSD) dataset.","PeriodicalId":21628,"journal":{"name":"Sci. Program.","volume":"1 1","pages":"5373531:1-5373531:11"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Program.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/5373531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the defects of traditional full-text retrieval models in dealing with mathematical expressions, which are special objects different from ordinary texts, a multimodal retrieval and ranking method for scientific documents based on hesitant fuzzy sets (HFS) and XLNet is proposed. This method integrates multimodal information, such as mathematical expression images and context text, as keywords to realize the retrieval of scientific documents. In the image modal, the images of mathematical expressions are recognized, and the hesitancy fuzzy set theory is introduced to calculate the hesitancy fuzzy similarity between mathematical query expressions and the mathematical expressions in candidate scientific documents. Meanwhile, in the text mode, XLNet is used to generate word vectors of the mathematical expression context to obtain the similarity between the query text and the mathematical expression context of the candidate scientific documents. Finally, the multimodal evaluation is integrated, and the hesitation fuzzy set is constructed at the document level to obtain the final scores of the scientific documents and corresponding ranked output. The experimental results show that the recall and precision of this method are 0.774 and 0.663 on the NTCIR dataset, respectively, and the average normalized discounted cumulative gain (NDCG) value of the top-10 ranking results is 0.880 on the Chinese scientific document (CSD) dataset.
基于HFS和XLNet的科学文献多模态检索与排序方法
针对传统全文检索模型在处理数学表达式这一不同于普通文本的特殊对象方面存在的缺陷,提出了一种基于犹豫模糊集(HFS)和XLNet的科学文献多模态检索与排序方法。该方法将数学表达式图像和上下文文本等多模态信息作为关键词,实现科学文献的检索。在图像模态中,对数学表达式的图像进行识别,并引入犹豫模糊集理论计算数学查询表达式与候选科学文献中的数学表达式之间的犹豫模糊相似度。同时,在文本模式下,利用XLNet生成数学表达式上下文的词向量,获得查询文本与候选科学文献数学表达式上下文的相似度。最后,综合多模态评价,在文献层面构造犹豫模糊集,得到科学文献的最终得分和相应的排名输出。实验结果表明,该方法在NTCIR数据集上的查全率和查准率分别为0.774和0.663,在中国科学文献(CSD)数据集上排名前10位结果的平均归一化贴现累积增益(NDCG)值为0.880。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信