{"title":"EXACT SOLUTIONS FOR OSCILLATING MOTIONS OF SOME FLUIDS WITH POWER-LAW DEPENDENCE OF VISCOSITY ON THE PRESSURE","authors":"C. Fetecau, M. Agop","doi":"10.56082/annalsarscimath.2020.1-2.295","DOIUrl":null,"url":null,"abstract":"Analytical expressions for the steady-state components of the dimensionless starting solutions corresponding to some oscillatory motions through a horizontal rectangular channel of two classes of incompressible Newtonian fluids with power-law dependence of viscosity on the pressure are established in the simplest forms. The fluid motion is generated by the lower plate that oscillates in its plane. For validation, three limiting cases are considered and interesting graphical representations are provided. It is worth pointing out the fact that such solutions are important in practice for those who want to eliminate the transients from their experiments. In addition, the dimensionless steady shear stresses corresponding to the simple Couette flow of such fluids are constants on the whole flow domain although the adequate velocity fields are functions of y","PeriodicalId":38807,"journal":{"name":"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications","volume":"72 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Academy of Romanian Scientists: Series on Mathematics and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56082/annalsarscimath.2020.1-2.295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6
Abstract
Analytical expressions for the steady-state components of the dimensionless starting solutions corresponding to some oscillatory motions through a horizontal rectangular channel of two classes of incompressible Newtonian fluids with power-law dependence of viscosity on the pressure are established in the simplest forms. The fluid motion is generated by the lower plate that oscillates in its plane. For validation, three limiting cases are considered and interesting graphical representations are provided. It is worth pointing out the fact that such solutions are important in practice for those who want to eliminate the transients from their experiments. In addition, the dimensionless steady shear stresses corresponding to the simple Couette flow of such fluids are constants on the whole flow domain although the adequate velocity fields are functions of y
期刊介绍:
The journal Mathematics and Its Applications is part of the Annals of the Academy of Romanian Scientists (ARS), in which several series are published. Although the Academy is almost one century old, due to the historical conditions after WW2 in Eastern Europe, it is just starting with 2006 that the Annals are published. The Editor-in-Chief of the Annals is the President of ARS, Prof. Dr. V. Candea and Academician A.E. Sandulescu (†) is his deputy for this domain. Mathematics and Its Applications invites publication of contributed papers, short notes, survey articles and reviews, with a novel and correct content, in any area of mathematics and its applications. Short notes are published with priority on the recommendation of one of the members of the Editorial Board and should be 3-6 pages long. They may not include proofs, but supplementary materials supporting all the statements are required and will be archivated. The authors are encouraged to publish the extended version of the short note, elsewhere. All received articles will be submitted to a blind peer review process. Mathematics and Its Applications has an Open Access policy: all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. No submission or processing fees are required. Targeted topics include : Ordinary and partial differential equations Optimization, optimal control and design Numerical Analysis and scientific computing Algebraic, topological and differential structures Probability and statistics Algebraic and differential geometry Mathematical modelling in mechanics and engineering sciences Mathematical economy and game theory Mathematical physics and applications.