The weight recursions for the 2-rotation symmetric quartic Boolean functions

IF 0.7 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
T. Cusick, Younhwan Cheon
{"title":"The weight recursions for the 2-rotation symmetric quartic Boolean functions","authors":"T. Cusick, Younhwan Cheon","doi":"10.3934/AMC.2021011","DOIUrl":null,"url":null,"abstract":"A Boolean function in \\begin{document}$ n $\\end{document} variables is 2-rotation symmetric if it is invariant under even powers of \\begin{document}$ \\rho(x_1, \\ldots, x_n) = (x_2, \\ldots, x_n, x_1) $\\end{document} , but not under the first power (ordinary rotation symmetry); we call such a function a 2-function. A 2-function is called monomial rotation symmetric (MRS) if it is generated by applying powers of \\begin{document}$ \\rho^2 $\\end{document} to a single monomial. If the quartic MRS 2-function in \\begin{document}$ 2n $\\end{document} variables has a monomial \\begin{document}$ x_1 x_q x_r x_s $\\end{document} , then we use the notation \\begin{document}$ {2-}(1,q,r,s)_{2n} $\\end{document} for the function. A detailed theory of equivalence of quartic MRS 2-functions in \\begin{document}$ 2n $\\end{document} variables was given in a \\begin{document}$ 2020 $\\end{document} paper by Cusick, Cheon and Dougan. This theory divides naturally into two classes, called \\begin{document}$ mf1 $\\end{document} and \\begin{document}$ mf2 $\\end{document} in the paper. After describing the equivalence classes, the second major problem is giving details of the linear recursions that the Hamming weights for any sequence of functions \\begin{document}$ {2-}(1,q,r,s)_{2n} $\\end{document} (with \\begin{document}$ q say), \\begin{document}$ n = s, s+1, \\ldots $\\end{document} can be shown to satisfy. This problem was solved for the \\begin{document}$ mf1 $\\end{document} case only in the \\begin{document}$ 2020 $\\end{document} paper. Using new ideas about \"short\" functions, Cusick and Cheon found formulas for the \\begin{document}$ mf2 $\\end{document} weights in a \\begin{document}$ 2021 $\\end{document} sequel to the \\begin{document}$ 2020 $\\end{document} paper. In this paper the actual recursions for the weights in the \\begin{document}$ mf2 $\\end{document} case are determined.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/AMC.2021011","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A Boolean function in \begin{document}$ n $\end{document} variables is 2-rotation symmetric if it is invariant under even powers of \begin{document}$ \rho(x_1, \ldots, x_n) = (x_2, \ldots, x_n, x_1) $\end{document} , but not under the first power (ordinary rotation symmetry); we call such a function a 2-function. A 2-function is called monomial rotation symmetric (MRS) if it is generated by applying powers of \begin{document}$ \rho^2 $\end{document} to a single monomial. If the quartic MRS 2-function in \begin{document}$ 2n $\end{document} variables has a monomial \begin{document}$ x_1 x_q x_r x_s $\end{document} , then we use the notation \begin{document}$ {2-}(1,q,r,s)_{2n} $\end{document} for the function. A detailed theory of equivalence of quartic MRS 2-functions in \begin{document}$ 2n $\end{document} variables was given in a \begin{document}$ 2020 $\end{document} paper by Cusick, Cheon and Dougan. This theory divides naturally into two classes, called \begin{document}$ mf1 $\end{document} and \begin{document}$ mf2 $\end{document} in the paper. After describing the equivalence classes, the second major problem is giving details of the linear recursions that the Hamming weights for any sequence of functions \begin{document}$ {2-}(1,q,r,s)_{2n} $\end{document} (with \begin{document}$ q say), \begin{document}$ n = s, s+1, \ldots $\end{document} can be shown to satisfy. This problem was solved for the \begin{document}$ mf1 $\end{document} case only in the \begin{document}$ 2020 $\end{document} paper. Using new ideas about "short" functions, Cusick and Cheon found formulas for the \begin{document}$ mf2 $\end{document} weights in a \begin{document}$ 2021 $\end{document} sequel to the \begin{document}$ 2020 $\end{document} paper. In this paper the actual recursions for the weights in the \begin{document}$ mf2 $\end{document} case are determined.
二次旋转对称四次布尔函数的权值递归
\begin{document}$ n $\end{document}变量中的布尔函数是2-旋转对称的,如果它在\begin{document}$ \rho(x_1, \ldots, x_n) = (x_2, \ldots, x_n, x_1) $\end{document}的偶次下不变,但在一次幂下不不变(普通旋转对称);我们称这样的函数为2函数。一个2函数被称为单项式旋转对称(MRS),如果它是由\begin{document}$ \rho^2 $\end{document}的幂对一个单项式产生的。如果在\begin{document}$ 2n $\end{document}变量中的四次MRS 2-函数有一个单项式\begin{document}$ x_1 x_q x_r x_s $\end{document},那么我们使用\begin{document}$ {2-}(1,q,r,s)_{2n} $\end{document}表示该函数。Cusick、Cheon和Dougan在\begin{document}$ 2020 $\end{document}的论文中给出了\begin{document}$ 2n $\end{document}变量中四次MRS - 2函数的详细等价理论。该理论在本文中自然分为\begin{document}$ mf1 $\end{document}和\begin{document}$ mf2 $\end{document}两类。在描述了等价类之后,第二个主要问题是给出线性递归的细节,即对于任意函数序列\begin{document}$ {2-}(1,q,r,s)_{2n} $\end{document}(以\begin{document}$ q为例),\begin{document}$ n = s, s+1, \ldots $\end{document}的汉明权重可以被证明满足。此问题仅在\begin{document}$ 2020 $\end{document}文件中解决了\begin{document}$ mf1 $\end{document}情况。使用关于“短”函数的新思想,Cusick和Cheon在\begin{document}$ 2021 $\end{document}的续文中找到了\begin{document}$ mf2 $\end{document}权重的公式。本文确定了\begin{document}$ mf2 $\end{document}情况下权重的实际递归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics of Communications
Advances in Mathematics of Communications 工程技术-计算机:理论方法
CiteScore
2.20
自引率
22.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected. Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome. More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信