{"title":"A CANCELLABLE AND IRREVOCABLE APPROACH FOR FINGERPRINT TEMPLATE PROTECTION USING OPTIMAL ITERATIVE SOLUBILITY ALGORITHM AND SECURE POINT BASE","authors":"K. Kanagalakshmi, Joycy K. Antony","doi":"10.4015/s1016237222500491","DOIUrl":null,"url":null,"abstract":"Biometric authentication scheme is a robust, reliable, and convenient way for person authentication with security. It is necessary to protect biometric information for maintaining secrecy. In this paper, fingerprint template protection is carried out using the optimal iterative solubility (OIS) algorithm. The purpose of developing the OIS algorithm is to generate the matrix coefficient of the template protection matrix. The processing steps for fingerprint template protection involve two phases such as enrolment and authentication. In the enrolment phase, the identity vector of the input fingerprint image is generated with the assistance of minutiae points, secure point base (SPB) and OIS algorithm, and then, the database is created. In the authentication phase, the query image is considered as an input, and the identity vector is generated based on the query image in the same manner as enrolment phase. Moreover, the cross indexing-based matching is done using Tanimoto coefficient to make final decisions in order to check whether the user authorization is accepted or rejected. The experimental result demonstrates that the developed OIS algorithm attained a maximum accuracy of 0.96, minimum false acceptance rate (FAR) of 0.077, minimum false rejection rate (FRR) of 0.070, and maximum genuine acceptance rate (GAR) of 0.964, correspondingly.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"39 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237222500491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biometric authentication scheme is a robust, reliable, and convenient way for person authentication with security. It is necessary to protect biometric information for maintaining secrecy. In this paper, fingerprint template protection is carried out using the optimal iterative solubility (OIS) algorithm. The purpose of developing the OIS algorithm is to generate the matrix coefficient of the template protection matrix. The processing steps for fingerprint template protection involve two phases such as enrolment and authentication. In the enrolment phase, the identity vector of the input fingerprint image is generated with the assistance of minutiae points, secure point base (SPB) and OIS algorithm, and then, the database is created. In the authentication phase, the query image is considered as an input, and the identity vector is generated based on the query image in the same manner as enrolment phase. Moreover, the cross indexing-based matching is done using Tanimoto coefficient to make final decisions in order to check whether the user authorization is accepted or rejected. The experimental result demonstrates that the developed OIS algorithm attained a maximum accuracy of 0.96, minimum false acceptance rate (FAR) of 0.077, minimum false rejection rate (FRR) of 0.070, and maximum genuine acceptance rate (GAR) of 0.964, correspondingly.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.