Integrability of the Two-Layer Spin System

Q4 Mathematics
G. Nugmanova, Akbota Myrzakul
{"title":"Integrability of the Two-Layer Spin System","authors":"G. Nugmanova, Akbota Myrzakul","doi":"10.7546/giq-20-2019-208-214","DOIUrl":null,"url":null,"abstract":"Among nonlinear evolutionary equations integrable ones are of particular interest since only in this we case can theoretically study the model in detail and in-depth. In the present, we establish the geometric connection of the well-known integrable two-component Manakov system with a new two-layer spin system. This indicates that the latter system is also integrable. In this formalism, geometric invariants define some important conserved quantities associated with two interacting curves, and with the corresponding nonlinear evolution equations. MSC : 53C05, 53C35","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"342 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-20-2019-208-214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

Among nonlinear evolutionary equations integrable ones are of particular interest since only in this we case can theoretically study the model in detail and in-depth. In the present, we establish the geometric connection of the well-known integrable two-component Manakov system with a new two-layer spin system. This indicates that the latter system is also integrable. In this formalism, geometric invariants define some important conserved quantities associated with two interacting curves, and with the corresponding nonlinear evolution equations. MSC : 53C05, 53C35
两层自旋系统的可积性
在非线性进化方程中,可积方程是特别有趣的,因为只有在这种情况下,我们才能从理论上详细和深入地研究模型。本文建立了著名的可积双分量Manakov系统与一个新的两层自旋系统之间的几何联系。这表明后一个系统也是可积的。在这种形式中,几何不变量定义了与两条相互作用曲线和相应的非线性演化方程相关的一些重要的守恒量。MSC: 53c05, 53c35
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信