{"title":"The Effect of Isostatic Pressing on the Dielectric Properties of Screen Printed Ba 0.5 Sr 0.5 TiO 3 Thick Films","authors":"Siwei Wang, Lingling Zhang, J. Zhai, F. Chen","doi":"10.1155/2013/852867","DOIUrl":null,"url":null,"abstract":"Ba0.5Sr0.5TiO3 thick films with B2O3–Li2O glass sintering aid were prepared by the screen printing method on Al2O3 substrates. A 200 MPa isostatic pressure was applied to the films before sintering. After being sintered at 950 °C, lower porosity and denser microstructure was obtained compared with the films without isostatic pressing. The dielectric constant and dielectric loss were 238 and 0.0028, respectively. A tunability of 61.7% was obtained for the isostatic pressed films, a 27.8% enhancement compared to unpressurized films. These results suggest that isostatic pressing is an effective way to prepare dielectric thick films with dense microstructure, low dielectric loss, and high tunability.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":"28 1","pages":"852867"},"PeriodicalIF":18.6000,"publicationDate":"2013-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2013/852867","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 2
Abstract
Ba0.5Sr0.5TiO3 thick films with B2O3–Li2O glass sintering aid were prepared by the screen printing method on Al2O3 substrates. A 200 MPa isostatic pressure was applied to the films before sintering. After being sintered at 950 °C, lower porosity and denser microstructure was obtained compared with the films without isostatic pressing. The dielectric constant and dielectric loss were 238 and 0.0028, respectively. A tunability of 61.7% was obtained for the isostatic pressed films, a 27.8% enhancement compared to unpressurized films. These results suggest that isostatic pressing is an effective way to prepare dielectric thick films with dense microstructure, low dielectric loss, and high tunability.
期刊介绍:
Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society.
Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.