Exact Self-Consistent Effective Hamiltonian Theory

Xindong Wang
{"title":"Exact Self-Consistent Effective Hamiltonian Theory","authors":"Xindong Wang","doi":"10.31219/osf.io/547gj","DOIUrl":null,"url":null,"abstract":"We propose a general variational fermionic many-body wavefunction that generates an effective Hamiltonian in a quadratic form, which can then be exactly solved. The theory can be constructed within the density functional theory framework, and a self-consistent scheme is proposed for solving the exact density functional theory. We apply the theory to structurally-disordered systems, symmetric and asymmetric Hubbard dimers, and the corresponding lattice models. The single fermion excitation spectra show a persistent gap due to the fermionic-entanglement-induced pairing condensate. For disordered systems, the density of states at the edge of the gap diverges in the thermodynamic limit, suggesting a topologically ordered phase. A sharp resonance is predicted as the gap is not dependent on the temperature of the system. For the symmetric Hubbard model, the gap for both half-filling and doped case suggests that the quantum phase transition between the antiferromagnetic and superconducting phases is continuous.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/547gj","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a general variational fermionic many-body wavefunction that generates an effective Hamiltonian in a quadratic form, which can then be exactly solved. The theory can be constructed within the density functional theory framework, and a self-consistent scheme is proposed for solving the exact density functional theory. We apply the theory to structurally-disordered systems, symmetric and asymmetric Hubbard dimers, and the corresponding lattice models. The single fermion excitation spectra show a persistent gap due to the fermionic-entanglement-induced pairing condensate. For disordered systems, the density of states at the edge of the gap diverges in the thermodynamic limit, suggesting a topologically ordered phase. A sharp resonance is predicted as the gap is not dependent on the temperature of the system. For the symmetric Hubbard model, the gap for both half-filling and doped case suggests that the quantum phase transition between the antiferromagnetic and superconducting phases is continuous.
精确自洽有效哈密顿理论
我们提出了一个广义变分费米子多体波函数,它产生一个二次型的有效哈密顿量,然后可以精确求解。该理论可以在密度泛函理论框架内构造,并提出了一种求解精确密度泛函理论的自洽方案。我们将该理论应用于结构无序系统、对称和非对称哈伯德二聚体以及相应的晶格模型。单费米子激发谱由于费米子纠缠诱导的对凝聚而显示出持久的间隙。对于无序系统,间隙边缘的态密度在热力学极限下发散,表明是一个拓扑有序的相。由于间隙不依赖于系统的温度,预测了尖锐的共振。对于对称的Hubbard模型,半填充和掺杂情况下的间隙表明反铁磁相和超导相之间的量子相变是连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信