Bias Correction and Robust Inference in Semiparametric Models

Jungjun Choi, Xiye Yang
{"title":"Bias Correction and Robust Inference in Semiparametric Models","authors":"Jungjun Choi, Xiye Yang","doi":"10.2139/ssrn.3429256","DOIUrl":null,"url":null,"abstract":"This paper analyzes several different biases that emerge from the (possibly) low-precision nonparametric ingredient in a semiparametric model. We show that both the variance part and the bias part of the nonparametric ingredient can lead to some biases in the semiparametric estimator, under conditions weaker than typically required in the literature. We then propose two bias-robust inference procedures, based on multi-scale jackknife and analytical bias correction, respectively. We also extend our framework to the case where the semiparametric estimator is constructed by some discontinuous functionals of the nonparametric ingredient. Simulation study shows that both bias-correction methods have good finite-sample performance.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"32 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3429256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper analyzes several different biases that emerge from the (possibly) low-precision nonparametric ingredient in a semiparametric model. We show that both the variance part and the bias part of the nonparametric ingredient can lead to some biases in the semiparametric estimator, under conditions weaker than typically required in the literature. We then propose two bias-robust inference procedures, based on multi-scale jackknife and analytical bias correction, respectively. We also extend our framework to the case where the semiparametric estimator is constructed by some discontinuous functionals of the nonparametric ingredient. Simulation study shows that both bias-correction methods have good finite-sample performance.
半参数模型中的偏差校正和鲁棒推理
本文分析了半参数模型中(可能)低精度的非参数成分所产生的几种不同的偏差。我们证明了非参数成分的方差部分和偏差部分在比文献中通常要求的条件弱的情况下都会导致半参数估计量的一些偏差。然后,我们提出了两种偏差鲁棒性推理方法,分别基于多尺度折刀和分析偏差校正。我们还将我们的框架扩展到由非参数成分的不连续泛函构造半参数估计量的情况。仿真研究表明,两种方法都具有良好的有限样本校正性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信