A study in fractional diffusion: Fractured rocks produced through horizontal wells with multiple, hydraulic fractures

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS
R. Raghavan, Chih-Cheng Chen
{"title":"A study in fractional diffusion: Fractured rocks produced through horizontal wells with multiple, hydraulic fractures","authors":"R. Raghavan, Chih-Cheng Chen","doi":"10.2516/ogst/2020062","DOIUrl":null,"url":null,"abstract":"The spatiotemporal evolution of transients in fractured rocks often displays unusual characteristics and is traced to multifaceted origins such as micro-discontinuity in rock properties, rock fragmentation, long-range connectivity and complex flow paths. A physics-based model that incorporates transient propagation wherein the mean square displacement of the diffusion front follows a nonlinear scaling with time is proposed. This model is based on fractional diffusion. The motivation for fractional flux laws follows from the existence of long-range connectivity that results in the mean square displacement of fronts moving faster than predicted by classical models; correspondingly, obstructions and discontinuities, local flow reversals, intercalations, etc. produce the opposite effect with fronts moving at a slower rate than classical predictions. The interplay of these two competing behaviors is quantified. We simulate transient production in a porous rock at the Theis scale as a result of production through a horizontal well consisting of multiple hydraulic fractures. Asymptotic solutions are derived and computations verified. The practical potential of this model is described through an example and the movement of fronts under the constraints of this model is demonstrated through the new expressions developed in this work. We demonstrate that this model offers a potential avenue to explain other behaviors noted in the literature. Though this work is developed in the context of applications to the earth sciences (production of hydrocarbons, extraction of geothermal resources, sequestration of radioactive waste and other fluids, groundwater flow), a minimal change in the Nomenclature permits application to other contexts. Ideas proposed here are particularly useful in the context of superdiffusion in bounded systems which until now, in many ways, has been considered to be an open problem.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2020062","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3

Abstract

The spatiotemporal evolution of transients in fractured rocks often displays unusual characteristics and is traced to multifaceted origins such as micro-discontinuity in rock properties, rock fragmentation, long-range connectivity and complex flow paths. A physics-based model that incorporates transient propagation wherein the mean square displacement of the diffusion front follows a nonlinear scaling with time is proposed. This model is based on fractional diffusion. The motivation for fractional flux laws follows from the existence of long-range connectivity that results in the mean square displacement of fronts moving faster than predicted by classical models; correspondingly, obstructions and discontinuities, local flow reversals, intercalations, etc. produce the opposite effect with fronts moving at a slower rate than classical predictions. The interplay of these two competing behaviors is quantified. We simulate transient production in a porous rock at the Theis scale as a result of production through a horizontal well consisting of multiple hydraulic fractures. Asymptotic solutions are derived and computations verified. The practical potential of this model is described through an example and the movement of fronts under the constraints of this model is demonstrated through the new expressions developed in this work. We demonstrate that this model offers a potential avenue to explain other behaviors noted in the literature. Though this work is developed in the context of applications to the earth sciences (production of hydrocarbons, extraction of geothermal resources, sequestration of radioactive waste and other fluids, groundwater flow), a minimal change in the Nomenclature permits application to other contexts. Ideas proposed here are particularly useful in the context of superdiffusion in bounded systems which until now, in many ways, has been considered to be an open problem.
分数扩散的研究:水平井产生的裂缝岩石具有多个水力裂缝
断裂岩石瞬态的时空演化往往表现出不同寻常的特征,并可追溯到多方面的原因,如岩石性质的微不连续、岩石破碎、远距离连通性和复杂的流动路径。提出了一种包含瞬态传播的物理模型,其中扩散锋的均方位移随时间呈非线性缩放。这个模型是基于分数扩散的。分数通量定律的动机来自于长程连通性的存在,这种连通性导致锋面的均方位移比经典模型预测的要快;相应地,障碍物和不连续、局部气流逆转、夹层等会产生相反的效果,锋面的移动速度比经典预测的要慢。这两种竞争行为的相互作用是量化的。我们模拟了由多个水力裂缝组成的水平井在Theis规模下多孔岩石中的瞬态生产。导出了渐近解,并对计算结果进行了验证。通过一个实例说明了该模型的实际应用潜力,并通过本文开发的新表达式演示了该模型约束下锋面的运动。我们证明这个模型提供了一个潜在的途径来解释文献中提到的其他行为。虽然这项工作是在应用于地球科学(碳氢化合物的生产、地热资源的开采、放射性废物和其他流体的隔离、地下水流动)的背景下开展的,但对《命名法》的微小改动允许应用于其他情况。这里提出的思想在有界系统的超扩散中特别有用,到目前为止,在许多方面,超扩散一直被认为是一个开放的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信