A calculation of periodic data of surface diffeomorphisms with one saddle orbit.

Q3 Mathematics
Олена В'ячеславівна Ноздрінова, Ольга Віталіївна Починка
{"title":"A calculation of periodic data of surface diffeomorphisms with one saddle orbit.","authors":"Олена В'ячеславівна Ноздрінова, Ольга Віталіївна Починка","doi":"10.15673/TMGC.V11I2.1025","DOIUrl":null,"url":null,"abstract":"In the paper it is proved that any orientable surface admits an orientation-preserving diffeomorphism with one saddle orbit. It distinguishes in principle the considered class of systems from source-sink diffeomorphisms existing only on the sphere. It is shown that diffeomorphisms with one saddle orbit of a positive type on any surface have exactly three node orbits. In addition, all possible types of periodic data for such diffeomorphisms are established. Namely, formulas are found expressing the periods of the sources through the periods of the sink and the saddle.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/TMGC.V11I2.1025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper it is proved that any orientable surface admits an orientation-preserving diffeomorphism with one saddle orbit. It distinguishes in principle the considered class of systems from source-sink diffeomorphisms existing only on the sphere. It is shown that diffeomorphisms with one saddle orbit of a positive type on any surface have exactly three node orbits. In addition, all possible types of periodic data for such diffeomorphisms are established. Namely, formulas are found expressing the periods of the sources through the periods of the sink and the saddle.
单鞍轨道表面微分同态的周期数据计算。
本文证明了任意可定向曲面具有一个鞍轨道的保定向微分同胚。它从原则上区分了所考虑的一类系统与只存在于球上的源-汇差分同态。证明了在任意曲面上具有一个正鞍型轨道的微分同胚有三个节点轨道。此外,还建立了这类微分同态的所有可能的周期数据类型。也就是说,找到了通过汇和鞍的周期来表示源周期的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信