An Application of Conditional Robust Calibration (CRC) to The Lotka-Volterra Predator-Prey model in computational systems biology: a comparison of two sampling strategies.

F. Bianconi, C. Antonini, L. Tomassoni, P. Valigi
{"title":"An Application of Conditional Robust Calibration (CRC) to The Lotka-Volterra Predator-Prey model in computational systems biology: a comparison of two sampling strategies.","authors":"F. Bianconi, C. Antonini, L. Tomassoni, P. Valigi","doi":"10.1109/EMBC.2018.8512744","DOIUrl":null,"url":null,"abstract":"Mathematical modeling is a widely used technique for describing the temporal behavior of biological systems. One of the most challenging topics in computational systems biology is the calibration of nonlinear models, i.e. the estimation of their unknown parameters. The state of the art methods in this field are the frequentist and Bayesian approaches. For both of them, the performances and accuracy of results highly depend on the sampling technique employed. Here, we test a novel Bayesian procedure for parameter estimation, called Conditional Robust Calibration (CRC), comparing two different sampling techniques: uniform and logarithmic Latin Hypercube Sampling (LHS). CRC is an iterative algorithm based on parameter space sampling and on the estimation of parameter density functions. We apply CRC with both sampling strategies to the Lotka-Volterra model and we obtain a more precise and reliable solution through logarithmically spaced samples.","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":"27 1","pages":"2358-2361"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC.2018.8512744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematical modeling is a widely used technique for describing the temporal behavior of biological systems. One of the most challenging topics in computational systems biology is the calibration of nonlinear models, i.e. the estimation of their unknown parameters. The state of the art methods in this field are the frequentist and Bayesian approaches. For both of them, the performances and accuracy of results highly depend on the sampling technique employed. Here, we test a novel Bayesian procedure for parameter estimation, called Conditional Robust Calibration (CRC), comparing two different sampling techniques: uniform and logarithmic Latin Hypercube Sampling (LHS). CRC is an iterative algorithm based on parameter space sampling and on the estimation of parameter density functions. We apply CRC with both sampling strategies to the Lotka-Volterra model and we obtain a more precise and reliable solution through logarithmically spaced samples.
条件鲁棒校准(CRC)在计算系统生物学中Lotka-Volterra捕食者-猎物模型中的应用:两种采样策略的比较。
数学建模是一种广泛应用于描述生物系统时间行为的技术。计算系统生物学中最具挑战性的课题之一是非线性模型的校准,即对其未知参数的估计。在这个领域中,最先进的方法是频率论和贝叶斯方法。对于这两种方法,结果的性能和准确性在很大程度上取决于所采用的采样技术。在这里,我们测试了一种新的贝叶斯过程参数估计,称为条件鲁棒校准(CRC),比较了两种不同的采样技术:均匀和对数拉丁超立方采样(LHS)。CRC是一种基于参数空间采样和参数密度函数估计的迭代算法。我们将两种采样策略的CRC应用于Lotka-Volterra模型,并通过对数间隔的样本获得更精确和可靠的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信