gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework

B. Hofner, A. Mayr, M. Schmid
{"title":"gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework","authors":"B. Hofner, A. Mayr, M. Schmid","doi":"10.18637/JSS.V074.I01","DOIUrl":null,"url":null,"abstract":"Generalized additive models for location, scale and shape (GAMLSS) are a flexible class of regression models that allow to model multiple parameters of a distribution function, such as the mean and the standard deviation, simultaneously. With the R package gamboostLSS, we provide a boosting method to fit these models. Variable selection and model choice are naturally available within this regularized regression framework. To introduce and illustrate the R package gamboostLSS and its infrastructure, we use a data set on stunted growth in India. In addition to the specification and application of the model itself, we present a variety of convenience functions, including methods for tuning parameter selection, prediction and visualization of results. The package gamboostLSS is available from CRAN (this http URL).","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V074.I01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

Generalized additive models for location, scale and shape (GAMLSS) are a flexible class of regression models that allow to model multiple parameters of a distribution function, such as the mean and the standard deviation, simultaneously. With the R package gamboostLSS, we provide a boosting method to fit these models. Variable selection and model choice are naturally available within this regularized regression framework. To introduce and illustrate the R package gamboostLSS and its infrastructure, we use a data set on stunted growth in India. In addition to the specification and application of the model itself, we present a variety of convenience functions, including methods for tuning parameter selection, prediction and visualization of results. The package gamboostLSS is available from CRAN (this http URL).
gamboostLSS:一个在GAMLSS框架中用于模型构建和变量选择的R包
广义加性位置、尺度和形状模型(GAMLSS)是一类灵活的回归模型,它允许同时对分布函数的多个参数(如平均值和标准差)进行建模。利用R包gamboostLSS,我们提供了一种增强方法来拟合这些模型。在这个正则化回归框架中,变量选择和模型选择自然是可用的。为了介绍和说明R包gamboostLSS及其基础设施,我们使用了印度发展迟缓的数据集。除了模型本身的规范和应用外,我们还提供了各种方便的功能,包括调整参数选择,预测和结果可视化的方法。包gamboostLSS可从CRAN(此http URL)获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信