{"title":"Steiner Wiener Index of Complete m-Ary Trees","authors":"Mesfin Masre Legese","doi":"10.22052/IJMC.2021.242136.1552","DOIUrl":null,"url":null,"abstract":"Let $G$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. For a subset $S$ of $V(G)$, the Steiner distance $d(S)$ of $S$ is the minimum size of a connected subgraph whose vertex set contains $S$. For an integer $k$ with $2 le k le n - 1$, the $k$-th Steiner Wiener index of a graph $G$ is defined as $SW_k(G) = sum_{substack{Ssubseteq V(G)\\ |S|=k}}d(S)$. In this paper, we present exact values of the $k$-th Steiner Wiener index of complete $m$-ary trees by using inclusion-excluision principle for various values of $k$.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":"38 1","pages":"101-109"},"PeriodicalIF":1.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2021.242136.1552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Let $G$ be a connected graph with vertex set $V(G)$ and edge set $E(G)$. For a subset $S$ of $V(G)$, the Steiner distance $d(S)$ of $S$ is the minimum size of a connected subgraph whose vertex set contains $S$. For an integer $k$ with $2 le k le n - 1$, the $k$-th Steiner Wiener index of a graph $G$ is defined as $SW_k(G) = sum_{substack{Ssubseteq V(G)\ |S|=k}}d(S)$. In this paper, we present exact values of the $k$-th Steiner Wiener index of complete $m$-ary trees by using inclusion-excluision principle for various values of $k$.