ECH capacities, Ehrhart theory, and toric varieties

Pub Date : 2019-06-05 DOI:10.4310/JSG.2021.v19.n2.a5
B. Wormleighton
{"title":"ECH capacities, Ehrhart theory, and toric varieties","authors":"B. Wormleighton","doi":"10.4310/JSG.2021.v19.n2.a5","DOIUrl":null,"url":null,"abstract":"ECH capacities were developed by Hutchings to study embedding problems for symplectic $4$-manifolds with boundary. They have found especial success in the case of certain toric symplectic manifolds where many of the computations resemble calculations found in cohomology of $\\mathbb{Q}$-line bundles on toric varieties, or in lattice point counts for rational polytopes. We formalise this observation in the case of convex toric lattice domains $X_\\Omega$ by constructing a natural polarised toric variety $(Y_{\\Sigma(\\Omega)},D_\\Omega)$ containing the all the information of the ECH capacities of $X_\\Omega$ in purely algebro-geometric terms. Applying the Ehrhart theory of the polytopes involved in this construction gives some new results in the combinatorialisation and asymptotics of ECH capacities for convex toric domains.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2021.v19.n2.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

ECH capacities were developed by Hutchings to study embedding problems for symplectic $4$-manifolds with boundary. They have found especial success in the case of certain toric symplectic manifolds where many of the computations resemble calculations found in cohomology of $\mathbb{Q}$-line bundles on toric varieties, or in lattice point counts for rational polytopes. We formalise this observation in the case of convex toric lattice domains $X_\Omega$ by constructing a natural polarised toric variety $(Y_{\Sigma(\Omega)},D_\Omega)$ containing the all the information of the ECH capacities of $X_\Omega$ in purely algebro-geometric terms. Applying the Ehrhart theory of the polytopes involved in this construction gives some new results in the combinatorialisation and asymptotics of ECH capacities for convex toric domains.
分享
查看原文
ECH容量,Ehrhart理论,和环面品种
ECH能力由Hutchings发展,用于研究具有边界的辛$4$ -流形的嵌入问题。他们在某些环形辛流形的情况下取得了特别的成功,其中许多计算类似于在环形上的$\mathbb{Q}$ -线束的上同调中发现的计算,或在有理多面体的格点计数中发现的计算。在凸环点阵域$X_\Omega$的情况下,我们通过构造一个包含$X_\Omega$的纯代数几何项的ECH容量的所有信息的自然极化环簇$(Y_{\Sigma(\Omega)},D_\Omega)$来形式化这一观察结果。利用这种构造所涉及的多面体的Ehrhart理论,给出了凸环域上ECH能力的组合化和渐近性的一些新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信