{"title":"On expansive homeomorphism of uniform spaces","authors":"A. Barzanouni, E. Shah","doi":"10.2478/ausm-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract We study the notion of expansive homeomorphisms on uniform spaces. It is shown that if there exists a topologically expansive homeomorphism on a uniform space, then the space is always a Hausdor space and hence a regular space. Further, we characterize orbit expansive homeomorphisms in terms of topologically expansive homeomorphisms and conclude that if there exist a topologically expansive homeomorphism on a compact uniform space then the space is always metrizable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2021-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We study the notion of expansive homeomorphisms on uniform spaces. It is shown that if there exists a topologically expansive homeomorphism on a uniform space, then the space is always a Hausdor space and hence a regular space. Further, we characterize orbit expansive homeomorphisms in terms of topologically expansive homeomorphisms and conclude that if there exist a topologically expansive homeomorphism on a compact uniform space then the space is always metrizable.