Gleipnir: toward practical error analysis for Quantum programs

Runzhou Tao, Yunong Shi, Jianan Yao, J. Hui, F. Chong, Ronghui Gu
{"title":"Gleipnir: toward practical error analysis for Quantum programs","authors":"Runzhou Tao, Yunong Shi, Jianan Yao, J. Hui, F. Chong, Ronghui Gu","doi":"10.1145/3453483.3454029","DOIUrl":null,"url":null,"abstract":"Practical error analysis is essential for the design, optimization, and evaluation of Noisy Intermediate-Scale Quantum(NISQ) computing. However, bounding errors in quantum programs is a grand challenge, because the effects of quantum errors depend on exponentially large quantum states. In this work, we present Gleipnir, a novel methodology toward practically computing verified error bounds in quantum programs. Gleipnir introduces the (ρ,δ)-diamond norm, an error metric constrained by a quantum predicate consisting of the approximate state ρ and its distance δ to the ideal state ρ. This predicate (ρ,δ) can be computed adaptively using tensor networks based on the Matrix Product States. Gleipnir features a lightweight logic for reasoning about error bounds in noisy quantum programs, based on the (ρ,δ)-diamond norm metric. Our experimental results show that Gleipnir is able to efficiently generate tight error bounds for real-world quantum programs with 10 to 100 qubits, and can be used to evaluate the error mitigation performance of quantum compiler transformations.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Practical error analysis is essential for the design, optimization, and evaluation of Noisy Intermediate-Scale Quantum(NISQ) computing. However, bounding errors in quantum programs is a grand challenge, because the effects of quantum errors depend on exponentially large quantum states. In this work, we present Gleipnir, a novel methodology toward practically computing verified error bounds in quantum programs. Gleipnir introduces the (ρ,δ)-diamond norm, an error metric constrained by a quantum predicate consisting of the approximate state ρ and its distance δ to the ideal state ρ. This predicate (ρ,δ) can be computed adaptively using tensor networks based on the Matrix Product States. Gleipnir features a lightweight logic for reasoning about error bounds in noisy quantum programs, based on the (ρ,δ)-diamond norm metric. Our experimental results show that Gleipnir is able to efficiently generate tight error bounds for real-world quantum programs with 10 to 100 qubits, and can be used to evaluate the error mitigation performance of quantum compiler transformations.
Gleipnir:面向量子程序的实际误差分析
实际误差分析对于噪声中尺度量子计算的设计、优化和评估至关重要。然而,量子程序中的边界误差是一个巨大的挑战,因为量子误差的影响依赖于指数级大的量子态。在这项工作中,我们提出了Gleipnir,一种用于实际计算量子程序中验证错误界限的新方法。Gleipnir引入了(ρ,δ)-diamond范数,这是一个由近似状态ρ和它到理想状态ρ的距离δ组成的量子谓词约束的误差度量。这个谓词(ρ,δ)可以使用基于矩阵积态的张量网络自适应地计算。Gleipnir具有轻量级逻辑,用于基于(ρ,δ)-钻石范数度量来推理噪声量子程序中的误差界。实验结果表明,Gleipnir能够有效地为10 ~ 100量子位的实际量子程序生成严格的错误边界,并可用于评估量子编译器转换的错误缓解性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信