{"title":"A compactness result for $\\mathcal{H}$‑holomorphic curves in symplectizations","authors":"Alexandru Doicu, Urs Fuchs","doi":"10.4310/JSG.2021.V19.N1.A2","DOIUrl":null,"url":null,"abstract":"$\\mathcal{H}-$holomorphic curves are solutions of a specific modification of the pseudoholomorphic curve equation in symplectizations involving a harmonic $1-$form as perturbation term. In this paper we compactify the moduli space of $\\mathcal{H}-$holomorphic curves with a priori bounds on the harmonic $1-$forms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2021.V19.N1.A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
$\mathcal{H}-$holomorphic curves are solutions of a specific modification of the pseudoholomorphic curve equation in symplectizations involving a harmonic $1-$form as perturbation term. In this paper we compactify the moduli space of $\mathcal{H}-$holomorphic curves with a priori bounds on the harmonic $1-$forms.