Decomposition and Inference of Sources through Spatiotemporal Analysis of Network Signals: The DISSTANS Python package

Tobias Köhne, B. Riel, M. Simons
{"title":"Decomposition and Inference of Sources through Spatiotemporal Analysis of Network Signals: The DISSTANS Python package","authors":"Tobias Köhne, B. Riel, M. Simons","doi":"10.1002/essoar.10509232.1","DOIUrl":null,"url":null,"abstract":"Dense, regional-scale, continuously-operating Global Navigation Satellite System (GNSS) networks are powerful tools to monitor plate motion and surface deformation. The spatial extent and density of these networks, as well as the length of observation records, have steadily increased in the past three decades.Software to enable the efficient analysis (especially the decomposition) of the ever-increasing amount of available timeseries should have the following desirable qualities: geographic portability, computational speed, automation (minimizing the need for manual inspection of each station), use of spatial correlation (exploiting the fact that stations experience common signals), source code availability, and documentation.We introduce the DISSTANS Python package, which aims to be generic (therefore portable), parallelizable (fast), and able to exploit the spatial structure of the observation records in a user-assisted, semi-automated framework, including uncertainty propagation.The code is open-source, includes an application interface documentation as well as usage tutorials, and is easily extendable.We present two case studies that demonstrate our code, one using a synthetic dataset and one using real GNSS network timeseries.","PeriodicalId":10649,"journal":{"name":"Comput. Geosci.","volume":"43 1","pages":"105247"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Geosci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/essoar.10509232.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Dense, regional-scale, continuously-operating Global Navigation Satellite System (GNSS) networks are powerful tools to monitor plate motion and surface deformation. The spatial extent and density of these networks, as well as the length of observation records, have steadily increased in the past three decades.Software to enable the efficient analysis (especially the decomposition) of the ever-increasing amount of available timeseries should have the following desirable qualities: geographic portability, computational speed, automation (minimizing the need for manual inspection of each station), use of spatial correlation (exploiting the fact that stations experience common signals), source code availability, and documentation.We introduce the DISSTANS Python package, which aims to be generic (therefore portable), parallelizable (fast), and able to exploit the spatial structure of the observation records in a user-assisted, semi-automated framework, including uncertainty propagation.The code is open-source, includes an application interface documentation as well as usage tutorials, and is easily extendable.We present two case studies that demonstrate our code, one using a synthetic dataset and one using real GNSS network timeseries.
通过网络信号的时空分析进行源的分解和推断:DISSTANS Python包
密集的、区域尺度的、连续运行的全球导航卫星系统(GNSS)网络是监测板块运动和地表变形的有力工具。这些网络的空间范围和密度以及观测记录的长度在过去三十年中稳步增加。能够对不断增加的可用时间序列进行有效分析(尤其是分解)的软件应该具有以下可取的品质:地理可移植性、计算速度、自动化(最大限度地减少对每个站点进行人工检查的需要)、空间相关性的使用(利用站点经历共同信号的事实)、源代码可用性和文档。我们介绍了DISSTANS Python包,其目标是通用(因此可移植),并行化(快速),并能够在用户辅助的半自动化框架中利用观测记录的空间结构,包括不确定性传播。代码是开源的,包括应用程序接口文档和使用教程,并且易于扩展。我们提出了两个案例研究来演示我们的代码,一个使用合成数据集,另一个使用真实的GNSS网络时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信