On the global existence of solutions to chemotaxis system for two populations in dimension two

IF 0.9 3区 数学 Q1 MATHEMATICS
Ke Lin
{"title":"On the global existence of solutions to chemotaxis system for two populations in dimension two","authors":"Ke Lin","doi":"10.1017/prm.2022.88","DOIUrl":null,"url":null,"abstract":"We consider the global existence for the following fully parabolic chemotaxis system with two populations\n\n \n \\[\\left\\{ \\begin{array}{@{}ll} \\partial_tu_i=\\kappa_i\\Delta u_i-\\chi_i\\nabla\\cdot(u_i\\nabla v),\\quad i\\in\\{1,2\\}, & x\\in\\Omega,\\ t>0, \\\\ v_t=\\Delta v-v+u_1+u_2, & x\\in\\Omega,\\ t>0,\\\\ u_i(x,t=0)=u_{i0}(x),\\quad v(x,t=0)=v_0(x), & x\\in\\Omega, \\end{array} \\right. \\]\n \n \n where \n \n $\\Omega =\\mathbb {R}^2$\n \n \n or \n \n $\\Omega =B_R(0)\\subset \\mathbb {R}^2$\n \n \n supplemented with homogeneous Neumann boundary conditions, \n \n $\\kappa _i,\\chi _i>0,$\n \n \n  \n \n $i=1,2$\n \n \n . The global existence remains open for the fully parabolic case as far as the author knows, while the existence of global solution was known for the parabolic-elliptic reduction with the second equation replaced by \n \n $0=\\Delta v-v+u_1+u_2$\n \n \n or \n \n $0=\\Delta v+u_1+u_2$\n \n \n . In this paper, we prove that there exists a global solution if the initial masses satisfy the certain sub-criticality condition. The proof is based on a version of the Moser–Trudinger type inequality for system in two dimensions.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"120 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2022.88","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the global existence for the following fully parabolic chemotaxis system with two populations \[\left\{ \begin{array}{@{}ll} \partial_tu_i=\kappa_i\Delta u_i-\chi_i\nabla\cdot(u_i\nabla v),\quad i\in\{1,2\}, & x\in\Omega,\ t>0, \\ v_t=\Delta v-v+u_1+u_2, & x\in\Omega,\ t>0,\\ u_i(x,t=0)=u_{i0}(x),\quad v(x,t=0)=v_0(x), & x\in\Omega, \end{array} \right. \] where $\Omega =\mathbb {R}^2$ or $\Omega =B_R(0)\subset \mathbb {R}^2$ supplemented with homogeneous Neumann boundary conditions, $\kappa _i,\chi _i>0,$   $i=1,2$ . The global existence remains open for the fully parabolic case as far as the author knows, while the existence of global solution was known for the parabolic-elliptic reduction with the second equation replaced by $0=\Delta v-v+u_1+u_2$ or $0=\Delta v+u_1+u_2$ . In this paper, we prove that there exists a global solution if the initial masses satisfy the certain sub-criticality condition. The proof is based on a version of the Moser–Trudinger type inequality for system in two dimensions.
二维两种群趋化系统解的整体存在性
我们考虑以下具有两个种群\[\left\{ \begin{array}{@{}ll} \partial_tu_i=\kappa_i\Delta u_i-\chi_i\nabla\cdot(u_i\nabla v),\quad i\in\{1,2\}, & x\in\Omega,\ t>0, \\ v_t=\Delta v-v+u_1+u_2, & x\in\Omega,\ t>0,\\ u_i(x,t=0)=u_{i0}(x),\quad v(x,t=0)=v_0(x), & x\in\Omega, \end{array} \right. \]的完全抛物型趋化系统的整体存在性,其中$\Omega =\mathbb {R}^2$或$\Omega =B_R(0)\subset \mathbb {R}^2$补充了齐次Neumann边界条件$\kappa _i,\chi _i>0,$$i=1,2$。据笔者所知,对于完全抛物型情况,整体解的存在性是开的,而对于用$0=\Delta v-v+u_1+u_2$或$0=\Delta v+u_1+u_2$代替第二方程的抛物-椭圆型约简,整体解的存在性是已知的。本文证明了当初始质量满足一定的亚临界条件时,存在一个全局解。该证明基于二维系统的Moser-Trudinger型不等式的一个版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信