W. Stringer, J. Porszasz, S. Bhatt, M. McCormack, B. Make, R. Casaburi
{"title":"Physiologic Insights from the COPD Genetic Epidemiology Study.","authors":"W. Stringer, J. Porszasz, S. Bhatt, M. McCormack, B. Make, R. Casaburi","doi":"10.15326/jcopdf.6.3.2019.0128","DOIUrl":null,"url":null,"abstract":"COPD Genetic Epidemiology Study (COPDGene®) manuscripts have provided important insights into chronic obstructive pulmonary disease (COPD) pathophysiology and outcomes, including a better understanding of COPD phenotypes relating computed tomography (CT) anatomic data to spirometric and patient-reported outcomes. Spirometry significantly underdiagnoses smoking-induced lung disease, and there is a marked improvement in sensitivity and specificity with CT scanning. This review also highlights the COPDGene® exploration of specific spirometry phenotypes (e.g.,PRISm), contributors to spirometric decline, composite physiologic measures, asthma-COPD overlap (ACO) syndrome, consequences of bronchodilator responsiveness, newer methods to assess small airway dysfunction, and spirometric correlates of comorbid diseases such as obesity and diabetes.","PeriodicalId":10249,"journal":{"name":"Chronic obstructive pulmonary diseases","volume":"152 1","pages":"256-266"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chronic obstructive pulmonary diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15326/jcopdf.6.3.2019.0128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
COPD Genetic Epidemiology Study (COPDGene®) manuscripts have provided important insights into chronic obstructive pulmonary disease (COPD) pathophysiology and outcomes, including a better understanding of COPD phenotypes relating computed tomography (CT) anatomic data to spirometric and patient-reported outcomes. Spirometry significantly underdiagnoses smoking-induced lung disease, and there is a marked improvement in sensitivity and specificity with CT scanning. This review also highlights the COPDGene® exploration of specific spirometry phenotypes (e.g.,PRISm), contributors to spirometric decline, composite physiologic measures, asthma-COPD overlap (ACO) syndrome, consequences of bronchodilator responsiveness, newer methods to assess small airway dysfunction, and spirometric correlates of comorbid diseases such as obesity and diabetes.