{"title":"Strain Rate and Temperature Effects on the Mechanical Properties of an E-Glass/Vinyl Ester Composite System","authors":"J. South, K. Reifsnider, S. Case","doi":"10.1520/CTR10553J","DOIUrl":null,"url":null,"abstract":"The need exists for a failure time schema to predict composite component lifetimes from quasi-static to dynamic strain rates. Models need to incorporate temperature, loading rate, and the time to failure of the composite components. An approach to describe the effects of strain rate and temperature on the mechanical properties of an E-glass/vinyl ester composite system is presented and verified with experimental data. A representation of the time to failure of the composite was constructed using the Monkmann-Grant equation, relating the applied steady state strain rate and the time to failure. Strain rates of 10 -6 to 1.6 s -1 were achieved and experiments were conducted at room temperature, 80 and 120°C. It was found that the composite system exhibited nearly a constant strain to failure over the applied rates and temperatures. The test data verified an approach to a failure time estimation scheme for steady state strain rate utilizing the Monkmann-Grant approach.","PeriodicalId":15514,"journal":{"name":"Journal of Composites Technology & Research","volume":"18 1","pages":"189-196"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Technology & Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/CTR10553J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The need exists for a failure time schema to predict composite component lifetimes from quasi-static to dynamic strain rates. Models need to incorporate temperature, loading rate, and the time to failure of the composite components. An approach to describe the effects of strain rate and temperature on the mechanical properties of an E-glass/vinyl ester composite system is presented and verified with experimental data. A representation of the time to failure of the composite was constructed using the Monkmann-Grant equation, relating the applied steady state strain rate and the time to failure. Strain rates of 10 -6 to 1.6 s -1 were achieved and experiments were conducted at room temperature, 80 and 120°C. It was found that the composite system exhibited nearly a constant strain to failure over the applied rates and temperatures. The test data verified an approach to a failure time estimation scheme for steady state strain rate utilizing the Monkmann-Grant approach.