On invariant submanifolds of paracompact (k;m)-spaces

Q4 Mathematics
S. Ghosh, A. Sarkar
{"title":"On invariant submanifolds of paracompact (k;m)-spaces","authors":"S. Ghosh, A. Sarkar","doi":"10.31926/but.mif.2020.13.62.2.13","DOIUrl":null,"url":null,"abstract":"The object of the present paper is to deduce some necessary and sufficient conditions for invariant Submanifolds of paracontact (κ, µ)-spaces to be totally geodesic. We also establish that a totally umbilical invariant submanifold of a paracontact (κ, µ)-manifold is also totally geodesic. Some more necessary and sufficient conditions for a submanifold of a paracontact (κ, µ)-manifold to be totally geodesic have been deduced using parallelity and pseudo parallelity of the second fundamental form. In the last section we obtain some results on paracontact (κ, µ)-manifold with concircular canonical field.","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":"139 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2020.13.62.2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The object of the present paper is to deduce some necessary and sufficient conditions for invariant Submanifolds of paracontact (κ, µ)-spaces to be totally geodesic. We also establish that a totally umbilical invariant submanifold of a paracontact (κ, µ)-manifold is also totally geodesic. Some more necessary and sufficient conditions for a submanifold of a paracontact (κ, µ)-manifold to be totally geodesic have been deduced using parallelity and pseudo parallelity of the second fundamental form. In the last section we obtain some results on paracontact (κ, µ)-manifold with concircular canonical field.
准紧(k;m)-空间的不变子流形
本文的目的是推导出副接触(κ,µ)-空间的不变子流形是完全测地线的几个充分必要条件。我们还证明了副接触(κ,µ)流形的完全脐不变子流形也是完全测地线的。利用第二基本形式的平行性和伪平行性,推导了副接触(κ,µ)-流形的子流形完全测地线的充分必要条件。在最后一节中,我们得到了具有共圆正则域的副接触(κ,µ)流形的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信