Advanced Deep Learning Spectroscopy of Scalogram Infused CNN Classifiers for Robust Identification of Post‐Hypoxic Epileptiform EEG Spikes

H. Abbasi, A. Gunn, C. Unsworth, L. Bennet
{"title":"Advanced Deep Learning Spectroscopy of Scalogram Infused CNN Classifiers for Robust Identification of Post‐Hypoxic Epileptiform EEG Spikes","authors":"H. Abbasi, A. Gunn, C. Unsworth, L. Bennet","doi":"10.1002/aisy.202000198","DOIUrl":null,"url":null,"abstract":"There is a lack of reliable prognostic biomarkers for hypoxic‐ischemic (HI) brain injury in preterm infants. Herein, spectrally detailed wavelet scalograms (WSs), derived from the 1024 Hz sampled electroencephalograms (EEG) of preterm fetal sheep after HI (n = 7), are infused into a high‐performance deep convolutional neural network (CNN) pattern classifier to identify high‐frequency spike transient biomarkers. The deep WS‐CNN pattern classifier identifies EEG spikes with remarkable accuracy of 99.81 = 0.15% (area under curve, AUC = 1.000), cross‐validated across 5010 EEG waveforms, during the first 6 h post‐HI (42 h total), an important clinical period for diagnosis of HI brain injury. Further, a feature‐fusion strategy is introduced to extract the spectrally dominant features of the raw EEG epochs to form robust 3D input matrix sets to be infused into the deep 2D‐CNNs for pattern classification. The results show that the proposed WS‐CNN approach is less sensitive to the potential morphological variations of spikes across all subjects compared to other deep CNNs and spectral‐fuzzy classifiers, allowing the user to flexibly choose an approach depending on their computational requirements. Collectively, the data provide a reliable framework that could help support well‐timed diagnosis of at‐risk neonates in clinical practice.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

There is a lack of reliable prognostic biomarkers for hypoxic‐ischemic (HI) brain injury in preterm infants. Herein, spectrally detailed wavelet scalograms (WSs), derived from the 1024 Hz sampled electroencephalograms (EEG) of preterm fetal sheep after HI (n = 7), are infused into a high‐performance deep convolutional neural network (CNN) pattern classifier to identify high‐frequency spike transient biomarkers. The deep WS‐CNN pattern classifier identifies EEG spikes with remarkable accuracy of 99.81 = 0.15% (area under curve, AUC = 1.000), cross‐validated across 5010 EEG waveforms, during the first 6 h post‐HI (42 h total), an important clinical period for diagnosis of HI brain injury. Further, a feature‐fusion strategy is introduced to extract the spectrally dominant features of the raw EEG epochs to form robust 3D input matrix sets to be infused into the deep 2D‐CNNs for pattern classification. The results show that the proposed WS‐CNN approach is less sensitive to the potential morphological variations of spikes across all subjects compared to other deep CNNs and spectral‐fuzzy classifiers, allowing the user to flexibly choose an approach depending on their computational requirements. Collectively, the data provide a reliable framework that could help support well‐timed diagnosis of at‐risk neonates in clinical practice.
基于深度学习谱图的CNN分类器鲁棒识别缺氧后癫痫样脑电图峰
早产儿缺氧缺血性(HI)脑损伤缺乏可靠的预后生物标志物。本文将取自早产儿绵羊HI (n = 7)后1024 Hz脑电图(EEG)的频谱细节小波尺度图(WSs)注入到高性能深度卷积神经网络(CNN)模式分类器中,以识别高频尖峰瞬态生物标志物。深度WS - CNN模式分类器在HI后(共42小时)的前6小时(HI脑损伤诊断的重要临床阶段)识别EEG峰,准确率达到99.81 = 0.15%(曲线下面积,AUC = 1.000),交叉验证了5010个EEG波形。此外,引入特征融合策略提取原始EEG时代的频谱优势特征,形成鲁棒的3D输入矩阵集,并将其注入深度2D - cnn中进行模式分类。结果表明,与其他深度CNN和光谱模糊分类器相比,所提出的WS - CNN方法对所有受试者中峰的潜在形态变化不太敏感,允许用户根据自己的计算需求灵活选择方法。总的来说,这些数据提供了一个可靠的框架,可以帮助支持在临床实践中及时诊断高危新生儿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信