Liver Cancer Detection and Classification Using Raspberry Pi

T. K. R. Agita, M. Moorthi
{"title":"Liver Cancer Detection and Classification Using Raspberry Pi","authors":"T. K. R. Agita, M. Moorthi","doi":"10.1166/jmihi.2022.3941","DOIUrl":null,"url":null,"abstract":"In practical radiology, early diagnosis and precise categorization of liver cancer are difficult issues. Manual segmentation is also a time-consuming process. So, utilizing various methodologies based on an embedded system, we detect liver cancer from abdominal CT images using automated\n liver cancer segmentation and classification. The objective is to categorize CT scan images of primary and secondary liver disease using a Back Propagation Neural Network (BPNN) classifier, which has greater accuracy than previous approaches. In this work, a newly proposed method is shown\n which has four phases: image preprocessing, image segmentation, extraction of the features, and classification of the liver. Level set segmentation for segmenting the liver from abdominal CT images and Practical Swarm Optimization (PSO) for the tumor segmentation. Then the features from the\n liver are extracted and given to the BPNN classifier to classify the liver cancer. These algorithms are implemented on the Raspberry Pi. Then it serially interfaces with the MAX3232 protocol via serial communication. The GSM 800C module is connected to the system to send SMS as primary or\n secondary cancer. The BPNN classification technique achieved an excellent accuracy of 97.98%. The experimental results demonstrate the efficiency of this proposed approach, which provides excellent accuracy with good results.","PeriodicalId":49032,"journal":{"name":"Journal of Medical Imaging and Health Informatics","volume":"27 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2022.3941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In practical radiology, early diagnosis and precise categorization of liver cancer are difficult issues. Manual segmentation is also a time-consuming process. So, utilizing various methodologies based on an embedded system, we detect liver cancer from abdominal CT images using automated liver cancer segmentation and classification. The objective is to categorize CT scan images of primary and secondary liver disease using a Back Propagation Neural Network (BPNN) classifier, which has greater accuracy than previous approaches. In this work, a newly proposed method is shown which has four phases: image preprocessing, image segmentation, extraction of the features, and classification of the liver. Level set segmentation for segmenting the liver from abdominal CT images and Practical Swarm Optimization (PSO) for the tumor segmentation. Then the features from the liver are extracted and given to the BPNN classifier to classify the liver cancer. These algorithms are implemented on the Raspberry Pi. Then it serially interfaces with the MAX3232 protocol via serial communication. The GSM 800C module is connected to the system to send SMS as primary or secondary cancer. The BPNN classification technique achieved an excellent accuracy of 97.98%. The experimental results demonstrate the efficiency of this proposed approach, which provides excellent accuracy with good results.
基于树莓派的肝癌检测与分类
在实际放射学中,肝癌的早期诊断和精确分类是一个难题。人工分割也是一个耗时的过程。因此,利用基于嵌入式系统的各种方法,我们使用自动肝癌分割和分类从腹部CT图像中检测肝癌。目的是使用反向传播神经网络(BPNN)分类器对原发性和继发性肝脏疾病的CT扫描图像进行分类,该分类器比以前的方法具有更高的准确性。本文提出了一种基于图像预处理、图像分割、特征提取和肝脏分类的新方法。用水平集分割腹部CT图像中的肝脏,用PSO算法分割肿瘤。然后从肝脏中提取特征并将其输入到BPNN分类器中进行肝癌分类。这些算法是在树莓派上实现的。然后通过串行通信与MAX3232协议进行串行接口。GSM 800C模块与系统相连,用于发送原发性或继发性癌症短信。BPNN分类技术的准确率达到了97.98%。实验结果证明了该方法的有效性,具有良好的精度和效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging and Health Informatics
Journal of Medical Imaging and Health Informatics MATHEMATICAL & COMPUTATIONAL BIOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Journal of Medical Imaging and Health Informatics (JMIHI) is a medium to disseminate novel experimental and theoretical research results in the field of biomedicine, biology, clinical, rehabilitation engineering, medical image processing, bio-computing, D2H2, and other health related areas. As an example, the Distributed Diagnosis and Home Healthcare (D2H2) aims to improve the quality of patient care and patient wellness by transforming the delivery of healthcare from a central, hospital-based system to one that is more distributed and home-based. Different medical imaging modalities used for extraction of information from MRI, CT, ultrasound, X-ray, thermal, molecular and fusion of its techniques is the focus of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信