Low-Resource Multilingual and Zero-Shot Multispeaker TTS

Q3 Environmental Science
Florian Lux, Julia Koch, Ngoc Thang Vu
{"title":"Low-Resource Multilingual and Zero-Shot Multispeaker TTS","authors":"Florian Lux, Julia Koch, Ngoc Thang Vu","doi":"10.48550/arXiv.2210.12223","DOIUrl":null,"url":null,"abstract":"While neural methods for text-to-speech (TTS) have shown great advances in modeling multiple speakers, even in zero-shot settings, the amount of data needed for those approaches is generally not feasible for the vast majority of the world’s over 6,000 spoken languages. In this work, we bring together the tasks of zero-shot voice cloning and multilingual low-resource TTS. Using the language agnostic meta learning (LAML) procedure and modifications to a TTS encoder, we show that it is possible for a system to learn speaking a new language using just 5 minutes of training data while retaining the ability to infer the voice of even unseen speakers in the newly learned language. We show the success of our proposed approach in terms of intelligibility, naturalness and similarity to target speaker using objective metrics as well as human studies and provide our code and trained models open source.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"21 1","pages":"741-751"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.12223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 6

Abstract

While neural methods for text-to-speech (TTS) have shown great advances in modeling multiple speakers, even in zero-shot settings, the amount of data needed for those approaches is generally not feasible for the vast majority of the world’s over 6,000 spoken languages. In this work, we bring together the tasks of zero-shot voice cloning and multilingual low-resource TTS. Using the language agnostic meta learning (LAML) procedure and modifications to a TTS encoder, we show that it is possible for a system to learn speaking a new language using just 5 minutes of training data while retaining the ability to infer the voice of even unseen speakers in the newly learned language. We show the success of our proposed approach in terms of intelligibility, naturalness and similarity to target speaker using objective metrics as well as human studies and provide our code and trained models open source.
低资源多语言和零机会多语TTS
虽然文本到语音(TTS)的神经方法在多说话者建模方面取得了巨大进步,即使在零射击设置中,这些方法所需的数据量对于世界上6000多种口语中的绝大多数来说通常是不可行的。在这项工作中,我们将零采样语音克隆和多语言低资源TTS任务结合在一起。使用语言不可知元学习(LAML)过程和对TTS编码器的修改,我们表明系统可以使用仅5分钟的训练数据学习说一门新语言,同时保留推断新学语言中甚至看不见的说话者声音的能力。我们使用客观指标和人类研究,在可理解性、自然性和与目标说话者的相似性方面展示了我们提出的方法的成功,并提供了我们的代码和训练模型的开源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信