Multilabel image analysis on Polyethylene Terephthalate bottle images using PETNet Convolution Architecture

Khoirul Aziz, Inggis Kurnia Trisiawan, Kadek Dwi Suyasmini, Z. Iklima, Mirna Yunita
{"title":"Multilabel image analysis on Polyethylene Terephthalate bottle images using PETNet Convolution Architecture","authors":"Khoirul Aziz, Inggis Kurnia Trisiawan, Kadek Dwi Suyasmini, Z. Iklima, Mirna Yunita","doi":"10.22441/sinergi.2023.2.003","DOIUrl":null,"url":null,"abstract":"Packaging is one of the important aspects of the product. Good packaging can increase the competitiveness of a product. Therefore, to maintain the quality of the packaging of a product, it is necessary to have a visual inspection. Furthermore, an automatic visual inspection can reduce the occurrence of human errors in the manual inspection process. This research will use the convolution network to detect and classify PET (Polyethylene Terephthalate) bottles. The Convolutional Neural Network (CNN) method is one approach that can be used to detect and classify PET bottle packaging. This research was conducted by comparing seven network architecture models, namely VGG-16, Inception V3, MobileNet V2, Xception, Inception ResNet V2, Depthwise Separable Convolution (DSC), and PETNet, which is the architectural model proposed in this study. The results of this study indicate that the PETNet model gives the best results compared to other models, with a test score of 96.04%, by detecting and classifying 461 of 480 images with an average test time of 0.0016 seconds.","PeriodicalId":31051,"journal":{"name":"Jurnal Ilmiah SINERGI","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah SINERGI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22441/sinergi.2023.2.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Packaging is one of the important aspects of the product. Good packaging can increase the competitiveness of a product. Therefore, to maintain the quality of the packaging of a product, it is necessary to have a visual inspection. Furthermore, an automatic visual inspection can reduce the occurrence of human errors in the manual inspection process. This research will use the convolution network to detect and classify PET (Polyethylene Terephthalate) bottles. The Convolutional Neural Network (CNN) method is one approach that can be used to detect and classify PET bottle packaging. This research was conducted by comparing seven network architecture models, namely VGG-16, Inception V3, MobileNet V2, Xception, Inception ResNet V2, Depthwise Separable Convolution (DSC), and PETNet, which is the architectural model proposed in this study. The results of this study indicate that the PETNet model gives the best results compared to other models, with a test score of 96.04%, by detecting and classifying 461 of 480 images with an average test time of 0.0016 seconds.
基于PETNet卷积架构的聚对苯二甲酸乙二醇酯瓶图像多标签分析
包装是产品的重要方面之一。好的包装可以增加产品的竞争力。因此,为了保持产品的包装质量,有必要进行目视检查。此外,自动目视检查可以减少人工检查过程中人为错误的发生。本研究将使用卷积网络对PET(聚对苯二甲酸乙二醇酯)瓶进行检测和分类。卷积神经网络(CNN)方法是一种可以用来检测和分类PET瓶包装的方法。本研究通过比较VGG-16、Inception V3、MobileNet V2、Xception、Inception ResNet V2、深度可分离卷积(deep - separableconvolution, DSC)和本研究提出的架构模型PETNet等7种网络架构模型进行研究。研究结果表明,PETNet模型对480幅图像中的461幅进行了检测和分类,平均测试时间为0.0016秒,测试分数为96.04%,是其他模型中效果最好的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
32
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信