{"title":"A combinatorial problem which is complete in polynomial space","authors":"S. Even, R. Tarjan","doi":"10.1145/800116.803754","DOIUrl":null,"url":null,"abstract":"We consider a generalization, which we call the Shannon switching game on vertices, of a familiar board game called HEX. We show that determining who wins such a game if each player plays perfectly is very hard; in fact, it is as hard as carrying out any polynomial-space-bounded computation. This result suggests that the theory of combinatorial games is difficult.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1975-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800116.803754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
We consider a generalization, which we call the Shannon switching game on vertices, of a familiar board game called HEX. We show that determining who wins such a game if each player plays perfectly is very hard; in fact, it is as hard as carrying out any polynomial-space-bounded computation. This result suggests that the theory of combinatorial games is difficult.