Direct force measurement and loading on developing tissues in intact avian embryos

Chon U Chan, Fengzhu Xiong, Arthur Michaut, Joana M. N. Vidigueira, O. Pourquié, L. Mahadevan
{"title":"Direct force measurement and loading on developing tissues in intact avian embryos","authors":"Chon U Chan, Fengzhu Xiong, Arthur Michaut, Joana M. N. Vidigueira, O. Pourquié, L. Mahadevan","doi":"10.1101/2022.06.20.496880","DOIUrl":null,"url":null,"abstract":"Developmental morphogenesis is driven by tissue stresses acting on tissue rheology. Direct measurements of forces in small tissues (100μm-1mm) in situ such as in early embryos require high spatial precision and minimal invasiveness. Here we report tissue force microscopy (TiFM) integrating a vertical cantilever probe and live imaging to enable close-loop control of mechanical loading in early chicken embryos. By testing previously qualitatively characterized force-producing tissues in the elongating body axis, we show that TiFM quantitatively captures stress dynamics with high sensitivity. TiFM also provides the capacity of applying a stable, minimally-invasive and physiologically relevant load to drive tissue deformation, which alters morphogenetic progression and cell movements. Together, TiFM addresses a key technological gap in tissue force measurement and manipulation in small developing embryos, and promises to contribute to the quantitative understanding of complex multi-tissue mechanics during development.","PeriodicalId":77105,"journal":{"name":"Development (Cambridge, England). Supplement","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development (Cambridge, England). Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2022.06.20.496880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Developmental morphogenesis is driven by tissue stresses acting on tissue rheology. Direct measurements of forces in small tissues (100μm-1mm) in situ such as in early embryos require high spatial precision and minimal invasiveness. Here we report tissue force microscopy (TiFM) integrating a vertical cantilever probe and live imaging to enable close-loop control of mechanical loading in early chicken embryos. By testing previously qualitatively characterized force-producing tissues in the elongating body axis, we show that TiFM quantitatively captures stress dynamics with high sensitivity. TiFM also provides the capacity of applying a stable, minimally-invasive and physiologically relevant load to drive tissue deformation, which alters morphogenetic progression and cell movements. Together, TiFM addresses a key technological gap in tissue force measurement and manipulation in small developing embryos, and promises to contribute to the quantitative understanding of complex multi-tissue mechanics during development.
完整禽类胚胎发育组织的直接力测量和载荷
发育形态发生是由组织应力作用于组织流变所驱动的。在小组织(100μm-1mm)的原位直接测量力(如早期胚胎)需要高空间精度和最小的侵入性。在这里,我们报告了组织力显微镜(TiFM)集成了垂直悬臂探针和实时成像,以实现早期鸡胚胎机械载荷的闭环控制。通过测试先前定性表征的细长体轴上的力产生组织,我们表明TiFM定量捕获应力动态具有高灵敏度。TiFM还提供了施加稳定、微创和生理相关负荷的能力,以驱动组织变形,从而改变形态发生进程和细胞运动。总之,TiFM解决了小发育胚胎中组织力测量和操纵的关键技术空白,并有望有助于定量理解发育过程中复杂的多组织力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信