Does Gastroenterology Need Artificial Intelligence?

Q3 Medicine
S. M. Kurbatsky
{"title":"Does Gastroenterology Need Artificial Intelligence?","authors":"S. M. Kurbatsky","doi":"10.22416/1382-4376-2021-31-6-103-105","DOIUrl":null,"url":null,"abstract":"Aim. An outlook of trends and perspectives in gastroenterology in the age of digital healthcare.Key points. Diagnosis gradually transforms to the task of image recognition. Tuning a diagnostic algorithm (DA) necessarily requires a statistically representative training set of images. In transition towards electronic medical records (EMR), such data will be generated automatically. Advances in machine image recognition and the upcoming availability of a large amount of medical data suitable for configuring DA both pave the way towards efficient computerassisted diagnosis.Conclusion. The growing volumes of medical data enforce, and advances in machine image recognition enable, the transition towards computer-assisted medical diagnosis. ","PeriodicalId":33798,"journal":{"name":"Rossiiskii zhurnal gastroenterologii gepatologii koloproktologii","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rossiiskii zhurnal gastroenterologii gepatologii koloproktologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22416/1382-4376-2021-31-6-103-105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Aim. An outlook of trends and perspectives in gastroenterology in the age of digital healthcare.Key points. Diagnosis gradually transforms to the task of image recognition. Tuning a diagnostic algorithm (DA) necessarily requires a statistically representative training set of images. In transition towards electronic medical records (EMR), such data will be generated automatically. Advances in machine image recognition and the upcoming availability of a large amount of medical data suitable for configuring DA both pave the way towards efficient computerassisted diagnosis.Conclusion. The growing volumes of medical data enforce, and advances in machine image recognition enable, the transition towards computer-assisted medical diagnosis. 
胃肠病学需要人工智能吗?
的目标。数字医疗时代胃肠病学的趋势和前景展望。要点。诊断逐渐转变为图像识别的任务。调优诊断算法(DA)必须需要具有统计代表性的图像训练集。在向电子医疗记录(EMR)过渡的过程中,这些数据将自动生成。机器图像识别的进步和即将到来的大量适合配置DA的医疗数据的可用性都为高效的计算机辅助诊断铺平了道路。不断增长的医疗数据量和机器图像识别的进步使计算机辅助医疗诊断成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
44
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信