Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources

Enzo Vitillaro
{"title":"Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources","authors":"Enzo Vitillaro","doi":"10.3934/dcdss.2021130","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The aim of this paper is to give global nonexistence and blow–up results for the problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{cases} u_{tt}-\\Delta u+P(x,u_t) = f(x,u) \\qquad &\\text{in $(0,\\infty)\\times\\Omega$,}\\\\ u = 0 &\\text{on $(0,\\infty)\\times \\Gamma_0$,}\\\\ u_{tt}+\\partial_\\nu u-\\Delta_\\Gamma u+Q(x,u_t) = g(x,u)\\qquad &\\text{on $(0,\\infty)\\times \\Gamma_1$,}\\\\ u(0,x) = u_0(x),\\quad u_t(0,x) = u_1(x) & \\text{in $\\overline{\\Omega}$,} \\end{cases} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula> is a bounded open <inline-formula><tex-math id=\"M2\">\\begin{document}$ C^1 $\\end{document}</tex-math></inline-formula> subset of <inline-formula><tex-math id=\"M3\">\\begin{document}$ {\\mathbb R}^N $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">\\begin{document}$ N\\ge 2 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\Gamma = \\partial\\Omega $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M6\">\\begin{document}$ (\\Gamma_0,\\Gamma_1) $\\end{document}</tex-math></inline-formula> is a partition of <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\Gamma $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\Gamma_1\\not = \\emptyset $\\end{document}</tex-math></inline-formula> being relatively open in <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\Gamma $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\Delta_\\Gamma $\\end{document}</tex-math></inline-formula> denotes the Laplace–Beltrami operator on <inline-formula><tex-math id=\"M11\">\\begin{document}$ \\Gamma $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M12\">\\begin{document}$ \\nu $\\end{document}</tex-math></inline-formula> is the outward normal to <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula>, and the terms <inline-formula><tex-math id=\"M14\">\\begin{document}$ P $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M15\">\\begin{document}$ Q $\\end{document}</tex-math></inline-formula> represent nonlinear damping terms, while <inline-formula><tex-math id=\"M16\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M17\">\\begin{document}$ g $\\end{document}</tex-math></inline-formula> are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2021130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The aim of this paper is to give global nonexistence and blow–up results for the problem

where \begin{document}$ \Omega $\end{document} is a bounded open \begin{document}$ C^1 $\end{document} subset of \begin{document}$ {\mathbb R}^N $\end{document}, \begin{document}$ N\ge 2 $\end{document}, \begin{document}$ \Gamma = \partial\Omega $\end{document}, \begin{document}$ (\Gamma_0,\Gamma_1) $\end{document} is a partition of \begin{document}$ \Gamma $\end{document}, \begin{document}$ \Gamma_1\not = \emptyset $\end{document} being relatively open in \begin{document}$ \Gamma $\end{document}, \begin{document}$ \Delta_\Gamma $\end{document} denotes the Laplace–Beltrami operator on \begin{document}$ \Gamma $\end{document}, \begin{document}$ \nu $\end{document} is the outward normal to \begin{document}$ \Omega $\end{document}, and the terms \begin{document}$ P $\end{document} and \begin{document}$ Q $\end{document} represent nonlinear damping terms, while \begin{document}$ f $\end{document} and \begin{document}$ g $\end{document} are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.

具有双曲动力边界条件、内部和边界非线性阻尼和源的波动方程的爆破
The aim of this paper is to give global nonexistence and blow–up results for the problem \begin{document}$ \begin{cases} u_{tt}-\Delta u+P(x,u_t) = f(x,u) \qquad &\text{in $(0, \infty) \times\Omega$,}\\ u = 0 &\text{on $ (0, \infty) \times\Gamma _0 $,}\\ u_{tt}+\partial_\nu u-\Delta_\Gamma u+Q(x,u_t) = g(x,u)\qquad &\text{on $ (0, \infty) \times\Gamma _1$,}\\ u(0,x) = u_0(x),\quad u_t(0,x) = u_1(x) & \text{in $\overline{\Omega}$,} \end{cases} $\end{document} where \begin{document}$ \Omega $\end{document} is a bounded open \begin{document}$ C^1 $\end{document} subset of \begin{document}$ {\mathbb R}^N $\end{document}, \begin{document}$ N\ge 2 $\end{document}, \begin{document}$ \Gamma = \partial\Omega $\end{document}, \begin{document}$ (\Gamma_0,\Gamma_1) $\end{document} is a partition of \begin{document}$ \Gamma $\end{document}, \begin{document}$ \Gamma_1\not = \emptyset $\end{document} being relatively open in \begin{document}$ \Gamma $\end{document}, \begin{document}$ \Delta_\Gamma $\end{document} denotes the Laplace–Beltrami operator on \begin{document}$ \Gamma $\end{document}, \begin{document}$ \nu $\end{document} is the outward normal to \begin{document}$ \Omega $\end{document}, and the terms \begin{document}$ P $\end{document} and \begin{document}$ Q $\end{document} represent nonlinear damping terms, while \begin{document}$ f $\end{document} and \begin{document}$ g $\end{document} are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信