{"title":"Blow–up for the wave equation with hyperbolic dynamical boundary conditions, interior and boundary nonlinear damping and sources","authors":"Enzo Vitillaro","doi":"10.3934/dcdss.2021130","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The aim of this paper is to give global nonexistence and blow–up results for the problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{cases} u_{tt}-\\Delta u+P(x,u_t) = f(x,u) \\qquad &\\text{in $(0,\\infty)\\times\\Omega$,}\\\\ u = 0 &\\text{on $(0,\\infty)\\times \\Gamma_0$,}\\\\ u_{tt}+\\partial_\\nu u-\\Delta_\\Gamma u+Q(x,u_t) = g(x,u)\\qquad &\\text{on $(0,\\infty)\\times \\Gamma_1$,}\\\\ u(0,x) = u_0(x),\\quad u_t(0,x) = u_1(x) & \\text{in $\\overline{\\Omega}$,} \\end{cases} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula> is a bounded open <inline-formula><tex-math id=\"M2\">\\begin{document}$ C^1 $\\end{document}</tex-math></inline-formula> subset of <inline-formula><tex-math id=\"M3\">\\begin{document}$ {\\mathbb R}^N $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">\\begin{document}$ N\\ge 2 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\Gamma = \\partial\\Omega $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M6\">\\begin{document}$ (\\Gamma_0,\\Gamma_1) $\\end{document}</tex-math></inline-formula> is a partition of <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\Gamma $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M8\">\\begin{document}$ \\Gamma_1\\not = \\emptyset $\\end{document}</tex-math></inline-formula> being relatively open in <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\Gamma $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\Delta_\\Gamma $\\end{document}</tex-math></inline-formula> denotes the Laplace–Beltrami operator on <inline-formula><tex-math id=\"M11\">\\begin{document}$ \\Gamma $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M12\">\\begin{document}$ \\nu $\\end{document}</tex-math></inline-formula> is the outward normal to <inline-formula><tex-math id=\"M13\">\\begin{document}$ \\Omega $\\end{document}</tex-math></inline-formula>, and the terms <inline-formula><tex-math id=\"M14\">\\begin{document}$ P $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M15\">\\begin{document}$ Q $\\end{document}</tex-math></inline-formula> represent nonlinear damping terms, while <inline-formula><tex-math id=\"M16\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M17\">\\begin{document}$ g $\\end{document}</tex-math></inline-formula> are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2021130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The aim of this paper is to give global nonexistence and blow–up results for the problem
where \begin{document}$ \Omega $\end{document} is a bounded open \begin{document}$ C^1 $\end{document} subset of \begin{document}$ {\mathbb R}^N $\end{document}, \begin{document}$ N\ge 2 $\end{document}, \begin{document}$ \Gamma = \partial\Omega $\end{document}, \begin{document}$ (\Gamma_0,\Gamma_1) $\end{document} is a partition of \begin{document}$ \Gamma $\end{document}, \begin{document}$ \Gamma_1\not = \emptyset $\end{document} being relatively open in \begin{document}$ \Gamma $\end{document}, \begin{document}$ \Delta_\Gamma $\end{document} denotes the Laplace–Beltrami operator on \begin{document}$ \Gamma $\end{document}, \begin{document}$ \nu $\end{document} is the outward normal to \begin{document}$ \Omega $\end{document}, and the terms \begin{document}$ P $\end{document} and \begin{document}$ Q $\end{document} represent nonlinear damping terms, while \begin{document}$ f $\end{document} and \begin{document}$ g $\end{document} are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.
The aim of this paper is to give global nonexistence and blow–up results for the problem \begin{document}$ \begin{cases} u_{tt}-\Delta u+P(x,u_t) = f(x,u) \qquad &\text{in $(0, \infty) \times\Omega$,}\\ u = 0 &\text{on $ (0, \infty) \times\Gamma _0 $,}\\ u_{tt}+\partial_\nu u-\Delta_\Gamma u+Q(x,u_t) = g(x,u)\qquad &\text{on $ (0, \infty) \times\Gamma _1$,}\\ u(0,x) = u_0(x),\quad u_t(0,x) = u_1(x) & \text{in $\overline{\Omega}$,} \end{cases} $\end{document} where \begin{document}$ \Omega $\end{document} is a bounded open \begin{document}$ C^1 $\end{document} subset of \begin{document}$ {\mathbb R}^N $\end{document}, \begin{document}$ N\ge 2 $\end{document}, \begin{document}$ \Gamma = \partial\Omega $\end{document}, \begin{document}$ (\Gamma_0,\Gamma_1) $\end{document} is a partition of \begin{document}$ \Gamma $\end{document}, \begin{document}$ \Gamma_1\not = \emptyset $\end{document} being relatively open in \begin{document}$ \Gamma $\end{document}, \begin{document}$ \Delta_\Gamma $\end{document} denotes the Laplace–Beltrami operator on \begin{document}$ \Gamma $\end{document}, \begin{document}$ \nu $\end{document} is the outward normal to \begin{document}$ \Omega $\end{document}, and the terms \begin{document}$ P $\end{document} and \begin{document}$ Q $\end{document} represent nonlinear damping terms, while \begin{document}$ f $\end{document} and \begin{document}$ g $\end{document} are nonlinear source terms. These results complement the analysis of the problem given by the author in two recent papers, dealing with local and global existence, uniqueness and well–posedness.