A degree preserving delta wye transformation with applications to 6-regular graphs and Feynman periods

IF 1.5 Q2 PHYSICS, MATHEMATICAL
S. Jeffries, K. Yeats
{"title":"A degree preserving delta wye transformation with applications to 6-regular graphs and Feynman periods","authors":"S. Jeffries, K. Yeats","doi":"10.4171/aihpd/172","DOIUrl":null,"url":null,"abstract":"We investigate a degree preserving variant of the $\\Delta$-Y transformation which replaces a triangle with a new 6-valent vertex which has double edges to the vertices that had been in the triangle. This operation is relevant for understanding scalar Feynman integrals in 6 dimensions. We study the structure of equivalence classes under this operation and its inverse, with particular attention to when the equivalence classes are finite, when they contain simple 6-regular graphs, and when they contain doubled 3-regular graphs. The last of these, in particular, is relevant for the Feynman integral calculations and we make some observations linking the structure of these classes to the Feynman periods. Furthermore, we investigate properties of minimal graphs in these equivalence classes.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":"98 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/aihpd/172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

Abstract

We investigate a degree preserving variant of the $\Delta$-Y transformation which replaces a triangle with a new 6-valent vertex which has double edges to the vertices that had been in the triangle. This operation is relevant for understanding scalar Feynman integrals in 6 dimensions. We study the structure of equivalence classes under this operation and its inverse, with particular attention to when the equivalence classes are finite, when they contain simple 6-regular graphs, and when they contain doubled 3-regular graphs. The last of these, in particular, is relevant for the Feynman integral calculations and we make some observations linking the structure of these classes to the Feynman periods. Furthermore, we investigate properties of minimal graphs in these equivalence classes.
6正则图和Feynman周期的保度三角维变换
我们研究了$\Delta$-Y变换的一个度保持变体,它将三角形替换为一个新的6价顶点,该顶点与三角形中的顶点具有双边。这个操作与理解6维的标量费曼积分有关。研究了该运算下等价类及其逆的结构,特别注意了等价类是有限的、包含简单6正则图和包含双3正则图的情况。其中最后一个,特别地,与费曼积分计算有关,我们做了一些观察,将这些类的结构与费曼周期联系起来。进一步研究了这些等价类中的极小图的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信