A characterization of equivalent martingale measures in a renewal risk model with applications to premium calculation principles

IF 0.7 Q3 STATISTICS & PROBABILITY
N. D. Macheras, Spyridon M. Tzaninis
{"title":"A characterization of equivalent martingale measures in a renewal risk model with applications to premium calculation principles","authors":"N. D. Macheras, Spyridon M. Tzaninis","doi":"10.15559/20-VMSTA148","DOIUrl":null,"url":null,"abstract":"Generalizing earlier work of Delbaen and Haezendonck for given compound renewal process $S$ under a probability measure $P$ we characterize all probability measures $Q$ on the domain of $P$ such that $Q$ and $P$ are progressively equivalent and $S$ remains a compound renewal process under $Q$. As a consequence, we prove that any compound renewal process can be converted into a compound Poisson process through a change of measures and we show how this approach is related to premium calculation principles.","PeriodicalId":42685,"journal":{"name":"Modern Stochastics-Theory and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Stochastics-Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/20-VMSTA148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

Abstract

Generalizing earlier work of Delbaen and Haezendonck for given compound renewal process $S$ under a probability measure $P$ we characterize all probability measures $Q$ on the domain of $P$ such that $Q$ and $P$ are progressively equivalent and $S$ remains a compound renewal process under $Q$. As a consequence, we prove that any compound renewal process can be converted into a compound Poisson process through a change of measures and we show how this approach is related to premium calculation principles.
续期风险模型中等价鞅测度的表征及其在保费计算中的应用
在推广Delbaen和Haezendonck关于概率测度$P$下的复合更新过程$S$的早期工作的基础上,我们在$P$域上刻画了所有的概率测度$Q$,使得$Q$和$P$是渐进等价的,并且$S$仍然是$Q$下的复合更新过程。因此,我们证明了任何复合更新过程都可以通过改变措施转化为复合泊松过程,并展示了这种方法如何与溢价计算原则相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Stochastics-Theory and Applications
Modern Stochastics-Theory and Applications STATISTICS & PROBABILITY-
CiteScore
1.30
自引率
50.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信