Synthesis and Experimental Thermal Adsorption Characteristics of Epoxy Hybrid Composite for Energy Storage Applications

R. Venkatesh, Roshita David, C. Priya, M. Aruna, Gopal Kaliyaperumal, N. Mukilarasan, Avinash Malladi, M. Karthikeyan
{"title":"Synthesis and Experimental Thermal Adsorption Characteristics of Epoxy Hybrid Composite for Energy Storage Applications","authors":"R. Venkatesh, Roshita David, C. Priya, M. Aruna, Gopal Kaliyaperumal, N. Mukilarasan, Avinash Malladi, M. Karthikeyan","doi":"10.1155/2023/4817731","DOIUrl":null,"url":null,"abstract":"Polymer-based matrix hybrid composites meet their demand in various engineering applications and food industries due to their excellent mechanical, thermal, corrosion, and biodegradable performance. The polymer-based hybrid composites have been a better choice for high thermal insulation at low cost. This experiment attempted to find the thermal adsorption characteristics, heat deflection temperature, linear thermal expansion, and thermal conductivity of epoxy hybrid composites, which contained four different layers of Kevlar and basalt fiber fabricated via a low-cost conventional hand mold layup technique. This experiment revealed that the effect of basalt/Kevlar fiber on epoxy increased thermal performance. The results noted that the hybrid composite consists of less Kevlar fiber with the maximum basalt fiber of sample 4, showed excellent thermal adsorption effect on weight loss limited at 70.98%, and a better heat deflection temperature and\n \n 11.78\n ×\n \n \n 10\n \n \n −\n 6\n \n \n \n per °C linear thermal expansion were obtained. Sample 3 exhibited a maximum thermal conductivity of 0.251 W/mK. However, the thermal adsorption of hybrid composite has been limited by more basalt fiber, leading to a 1 wt%/°C decomposition rate.","PeriodicalId":7279,"journal":{"name":"Adsorption Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4817731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Polymer-based matrix hybrid composites meet their demand in various engineering applications and food industries due to their excellent mechanical, thermal, corrosion, and biodegradable performance. The polymer-based hybrid composites have been a better choice for high thermal insulation at low cost. This experiment attempted to find the thermal adsorption characteristics, heat deflection temperature, linear thermal expansion, and thermal conductivity of epoxy hybrid composites, which contained four different layers of Kevlar and basalt fiber fabricated via a low-cost conventional hand mold layup technique. This experiment revealed that the effect of basalt/Kevlar fiber on epoxy increased thermal performance. The results noted that the hybrid composite consists of less Kevlar fiber with the maximum basalt fiber of sample 4, showed excellent thermal adsorption effect on weight loss limited at 70.98%, and a better heat deflection temperature and 11.78 × 10 − 6 per °C linear thermal expansion were obtained. Sample 3 exhibited a maximum thermal conductivity of 0.251 W/mK. However, the thermal adsorption of hybrid composite has been limited by more basalt fiber, leading to a 1 wt%/°C decomposition rate.
储能用环氧杂化复合材料的合成及热吸附特性研究
聚合物基基杂化复合材料由于其优异的机械、热、腐蚀和生物降解性能,满足了各种工程应用和食品工业的需求。聚合物基杂化复合材料已成为低成本高绝热材料的较好选择。本实验试图通过低成本的传统手工模铺层技术制备四层不同的凯夫拉纤维和玄武岩纤维的环氧复合材料,研究其热吸附特性、热挠曲温度、线性热膨胀率和导热系数。本实验揭示了玄武岩/凯夫拉纤维对环氧树脂热工性能的提高作用。结果表明:该杂化复合材料的Kevlar纤维含量较少,样品4的玄武岩纤维含量最高,热吸附效果良好,失重率限制在70.98%,热偏转温度较高,热膨胀率为11.78 × 10−6 /°C。样品3的最大导热系数为0.251 W/mK。然而,混杂复合材料的热吸附受到玄武岩纤维含量的限制,导致其分解率为1 wt%/°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信