Analysis of a dynamic contact problem with friction, damage and adhesion

Q4 Mathematics
A. Kasri, A. Touzaline
{"title":"Analysis of a dynamic contact problem with friction, damage and adhesion","authors":"A. Kasri, A. Touzaline","doi":"10.4064/AM2312-6-2018","DOIUrl":null,"url":null,"abstract":"We study a dynamic contact problem for viscoelastic materials with damage. The contact is modelled with Tresca’s friction law and a first order differential equation which describes adhesion effect of contact surfaces; the damage of the material is described by a function whose evolution is governed by a parabolic inclusion. Under appropriate assumptions, we provide a variational formulation of the mechanical problem and establish the existence and uniqueness of a weak solution.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/AM2312-6-2018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

We study a dynamic contact problem for viscoelastic materials with damage. The contact is modelled with Tresca’s friction law and a first order differential equation which describes adhesion effect of contact surfaces; the damage of the material is described by a function whose evolution is governed by a parabolic inclusion. Under appropriate assumptions, we provide a variational formulation of the mechanical problem and establish the existence and uniqueness of a weak solution.
分析了具有摩擦、损伤和粘附的动态接触问题
研究了含损伤粘弹性材料的动态接触问题。采用Tresca摩擦定律和描述接触面粘附效应的一阶微分方程对接触进行建模;材料的损伤用一个函数来描述,这个函数的演化受抛物线夹杂物的支配。在适当的假设条件下,我们给出了力学问题的变分形式,并建立了弱解的存在唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信