Hierarchical Neural Coding for Controllable CAD Model Generation

Xiang Xu, P. Jayaraman, J. Lambourne, Karl D. D. Willis, Yasutaka Furukawa
{"title":"Hierarchical Neural Coding for Controllable CAD Model Generation","authors":"Xiang Xu, P. Jayaraman, J. Lambourne, Karl D. D. Willis, Yasutaka Furukawa","doi":"10.48550/arXiv.2307.00149","DOIUrl":null,"url":null,"abstract":"This paper presents a novel generative model for Computer Aided Design (CAD) that 1) represents high-level design concepts of a CAD model as a three-level hierarchical tree of neural codes, from global part arrangement down to local curve geometry; and 2) controls the generation or completion of CAD models by specifying the target design using a code tree. Concretely, a novel variant of a vector quantized VAE with\"masked skip connection\"extracts design variations as neural codebooks at three levels. Two-stage cascaded auto-regressive transformers learn to generate code trees from incomplete CAD models and then complete CAD models following the intended design. Extensive experiments demonstrate superior performance on conventional tasks such as random generation while enabling novel interaction capabilities on conditional generation tasks. The code is available at https://github.com/samxuxiang/hnc-cad.","PeriodicalId":74529,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","volume":"78 1","pages":"38443-38461"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.00149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a novel generative model for Computer Aided Design (CAD) that 1) represents high-level design concepts of a CAD model as a three-level hierarchical tree of neural codes, from global part arrangement down to local curve geometry; and 2) controls the generation or completion of CAD models by specifying the target design using a code tree. Concretely, a novel variant of a vector quantized VAE with"masked skip connection"extracts design variations as neural codebooks at three levels. Two-stage cascaded auto-regressive transformers learn to generate code trees from incomplete CAD models and then complete CAD models following the intended design. Extensive experiments demonstrate superior performance on conventional tasks such as random generation while enabling novel interaction capabilities on conditional generation tasks. The code is available at https://github.com/samxuxiang/hnc-cad.
层次神经编码在可控CAD模型生成中的应用
本文提出了一种新的计算机辅助设计(CAD)生成模型:1)将CAD模型的高级设计概念表示为从全局零件排列到局部曲线几何的三层神经代码层次树;2)通过使用代码树指定目标设计来控制CAD模型的生成或完成。具体地说,一种带有“掩蔽跳跃连接”的矢量量化VAE的新变体在三个层次上提取设计变化作为神经码本。二级级联自回归变压器学习从不完整的CAD模型生成代码树,然后按照预期设计完成CAD模型。大量的实验表明,在随机生成等传统任务上具有优越的性能,同时在条件生成任务上具有新颖的交互能力。代码可在https://github.com/samxuxiang/hnc-cad上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信