Smooth rigidity and Remez inequalities via Topology of level sets

IF 0.4 Q4 MATHEMATICS
Y. Yomdin
{"title":"Smooth rigidity and Remez inequalities via Topology of level sets","authors":"Y. Yomdin","doi":"10.5427/jsing.2022.25v","DOIUrl":null,"url":null,"abstract":"A smooth rigidity inequalitiy provides an explicit lower bound for the (d+1)st derivatives of a smooth function f , which holds, if f exhibits certain patterns, forbidden for polynomials of degree d. The main goal of the present paper is twofold: first, we provide an overview of some recent results and questions related to smooth rigidity, which recently were obtained in Singularity Theory, in Approximation Theory, and in Whitney smooth extensions. Second, we prove some new results, specifically, a new Remez-type inequality, and on this base we obtain a new rigidity inequality. In both parts of the paper we stress the topology of the level sets, as the input information. Here are the main new results of the paper: Let B be the unit n-dimensional ball. For a given integer d let Z ⊂ B be a smooth compact hypersurface with N = (d − 1) + 1 connected components Zj . Let μj be the n-volume of the interior of Zj, and put μ = minμj , j = 1, . . . , N . Then for each polynomial P of degree d on R we have maxBn |P | max Z |P | ≤ ( 4n μ ). As a consequence, we provide an explicit lower bound for the (d+1)-st derivatives of any smooth function f , which vanishes on Z, while being of order 1 on B (smooth rigidity): ||f || ≥ 1 (d+ 1)! ( 4n μ ). We also provide an interpretation, in terms of smooth rigidity, of one of the simplest versions of the results in [8].","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2022.25v","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

A smooth rigidity inequalitiy provides an explicit lower bound for the (d+1)st derivatives of a smooth function f , which holds, if f exhibits certain patterns, forbidden for polynomials of degree d. The main goal of the present paper is twofold: first, we provide an overview of some recent results and questions related to smooth rigidity, which recently were obtained in Singularity Theory, in Approximation Theory, and in Whitney smooth extensions. Second, we prove some new results, specifically, a new Remez-type inequality, and on this base we obtain a new rigidity inequality. In both parts of the paper we stress the topology of the level sets, as the input information. Here are the main new results of the paper: Let B be the unit n-dimensional ball. For a given integer d let Z ⊂ B be a smooth compact hypersurface with N = (d − 1) + 1 connected components Zj . Let μj be the n-volume of the interior of Zj, and put μ = minμj , j = 1, . . . , N . Then for each polynomial P of degree d on R we have maxBn |P | max Z |P | ≤ ( 4n μ ). As a consequence, we provide an explicit lower bound for the (d+1)-st derivatives of any smooth function f , which vanishes on Z, while being of order 1 on B (smooth rigidity): ||f || ≥ 1 (d+ 1)! ( 4n μ ). We also provide an interpretation, in terms of smooth rigidity, of one of the simplest versions of the results in [8].
基于水平集拓扑的光滑刚性和Remez不等式
光滑刚性不等式为光滑函数f的(d+1)st阶导数提供了一个显式下界,如果f表现出某些模式,则对d次多项式是禁止的。本文的主要目标有两个:首先,我们概述了最近在奇点理论、近似理论和惠特尼光滑扩展中获得的与光滑刚性有关的一些结果和问题。其次,我们证明了一些新的结果,特别是一个新的remez型不等式,并在此基础上得到了一个新的刚性不等式。在本文的两部分中,我们都强调水平集的拓扑结构作为输入信息。以下是本文的主要新结果:设B为单位n维球。对于给定的整数d,设Z∧B是一个光滑紧超曲面,具有N = (d−1)+ 1个连通分量Zj。设μj为Zj内部的n体积,设μ = minμj, j = 1,…。,名词;那么对于R上的每个d次多项式P,我们有maxBn |P | max Z |P |≤(4n μ)。因此,我们为任意光滑函数f的(d+1)-st阶导数提供了一个显式下界,该函数在Z上消失,而在B上是1阶(光滑刚性):||f ||≥1 (d+1) !(4n μ)。我们还对[8]中结果的一个最简单版本提供了平滑刚性的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信