Topological Stationarity and Precompactness of Probability Measures

viXra Pub Date : 2020-11-01 DOI:10.31219/osf.io/fe693
Yu-Lin Chou
{"title":"Topological Stationarity and Precompactness of Probability Measures","authors":"Yu-Lin Chou","doi":"10.31219/osf.io/fe693","DOIUrl":null,"url":null,"abstract":"We prove the precompactness of a collection of Borel probability measures over an arbitrary metric space precisely under a new legitimate notion, which we term \\textit{topological stationarity}, regulating the sequential behavior of Borel probability measures directly in terms of the open sets. Thus the important direct part of Prokhorov's theorem, which permeates the weak convergence theory, admits a new version with the original and sole assumption --- tightness --- replaced by topological stationarity. Since, as will be justified, our new condition is not vacuous and is logically independent of tightness, our result deepens the understanding of the connection between precompactness of Borel probability measures and metric topologies.","PeriodicalId":23650,"journal":{"name":"viXra","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"viXra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31219/osf.io/fe693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the precompactness of a collection of Borel probability measures over an arbitrary metric space precisely under a new legitimate notion, which we term \textit{topological stationarity}, regulating the sequential behavior of Borel probability measures directly in terms of the open sets. Thus the important direct part of Prokhorov's theorem, which permeates the weak convergence theory, admits a new version with the original and sole assumption --- tightness --- replaced by topological stationarity. Since, as will be justified, our new condition is not vacuous and is logically independent of tightness, our result deepens the understanding of the connection between precompactness of Borel probability measures and metric topologies.
概率测度的拓扑平稳性和预紧性
我们在一个新的合法概念下精确地证明了任意度量空间上Borel概率测度集合的预紧性,我们称之为\textit{拓扑平稳性},直接用开集来调节Borel概率测度的序列行为。因此,渗透到弱收敛理论中的Prokhorov定理的重要直接部分,承认了一个新的版本,其原始和唯一的假设——紧密性——被拓扑平稳性所取代。因为,正如将要证明的那样,我们的新条件不是真空的,并且在逻辑上独立于紧性,我们的结果加深了对Borel概率测度的预紧性和度量拓扑之间联系的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信